Small-time asymptotics of stopped Lévy bridges and simulation schemes with controlled bias

We characterize the small-time asymptotic behavior of the exit probability of a L\'evy process out of a two-sided interval and of the law of its overshoot, conditionally on the terminal value of the process. The asymptotic expansions are given in the form of a first-order term and a precise computable error bound. As an important application of these formulas, we develop a novel adaptive discretization scheme for the Monte Carlo computation of functionals of killed L\'evy processes with controlled bias. The considered functionals appear in several domains of mathematical finance (e.g., structural credit risk models, pricing of barrier options, and contingent convertible bonds) as well as in natural sciences. The proposed algorithm works by adding discretization points sampled from the L\'evy bridge density to the skeleton of the process until the overall error for a given trajectory becomes smaller than the maximum tolerance given by the user.

[1]  R. Tempone,et al.  Adaptive weak approximation of stochastic differential equations , 2001 .

[2]  Raul Tempone,et al.  Adaptive Monte Carlo Algorithms for Stopped Diffusion , 2005 .

[3]  Peter Tankov,et al.  Asymptotic results for time-changed Lévy processes sampled at hitting times , 2011 .

[4]  Paolo Baldi,et al.  Exact asymptotics for the probability of exit from a domain and applications to simulation , 1995 .

[5]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[6]  J. Doob Stochastic processes , 1953 .

[7]  C. Houdré Remarks on deviation inequalities for functions of infinitely divisible random vectors , 2002 .

[8]  José E. Figueroa-López,et al.  The Small-Maturity Smile for Exponential Lévy Models , 2011, SIAM J. Financial Math..

[9]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[10]  Ralf Metzler,et al.  Leapover lengths and first passage time statistics for Lévy flights. , 2007, Physical review letters.

[12]  Editors , 1986, Brain Research Bulletin.

[13]  C. Houdr'e,et al.  Small-time expansions of the distributions, densities, and option prices of stochastic volatility models with Lévy jumps , 2010, 1009.4211.

[14]  J. C. Pardo,et al.  A Wiener–Hopf Monte Carlo simulation technique for Lévy processes , 2009, 0912.4743.

[15]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[16]  K. Górska,et al.  Exact and explicit probability densities for one-sided Lévy stable distributions. , 2010, Physical review letters.

[17]  Cláudia Ribeiro,et al.  Correcting for Simulation Bias in Monte Carlo Methods to Value Exotic Options in Models Driven by Lévy Processes , 2006 .

[18]  Aleksei V. Chechkin,et al.  First passage and arrival time densities for Lévy flights and the failure of the method of images , 2003 .

[19]  A. Atiya,et al.  Using Brownian Bridge for Fast Simulation of Jump-Diffusion Processes and Barrier Options , 2002 .

[20]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[21]  F. Comte,et al.  Estimation for L\'{e}vy processes from high frequency data within a long time interval , 2011, 1105.2424.

[22]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[23]  José E. Figueroa-López Nonparametric estimation of time-changed Lévy models under high-frequency data , 2009, Advances in Applied Probability.

[24]  Ott,et al.  Anomalous diffusion in "living polymers": A genuine Levy flight? , 1990, Physical review letters.

[25]  Cheng Ouyang,et al.  Small-time expansions for local jump-diffusion models , 2011, 1108.3386.

[26]  Expansion of transition distributions of Lévy processes in small time , 2002 .

[27]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[28]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[29]  José E. Figueroa-López Nonparametric Estimation for Lévy Models Based on Discrete-Sampling , 2009 .

[30]  Jos'e E. Figueroa-L'opez,et al.  Sieve-based confidence intervals and bands for Lévy densities , 2011, 1104.4389.

[31]  N. U. Prabhu,et al.  Stochastic Processes and Their Applications , 1999 .

[32]  Kyoung-Sook Moon EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS , 2008 .

[33]  Sergey V. Buldyrev,et al.  Properties of Lévy flights on an interval with absorbing boundaries , 2001 .

[34]  Wim Schoutens,et al.  Exotic Option Pricing and Advanced Lévy Models , 2005 .

[35]  Hui Wang,et al.  First passage times of a jump diffusion process , 2003, Advances in Applied Probability.

[36]  Pierre L'Ecuyer,et al.  Efficient Monte Carlo and Quasi - Monte Carlo Option Pricing Under the Variance Gamma Model , 2006, Manag. Sci..

[37]  F. Comte,et al.  Nonparametric estimation for pure jump Lévy processes based on high frequency data. , 2009 .

[38]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[39]  P. Tankov Pricing and Hedging in Exponential Lévy Models: Review of Recent Results , 2011 .

[40]  R. Léandre,et al.  Densite en temps petit d'un processus de sauts , 1987 .

[41]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[43]  P. Barthelemy,et al.  A Lévy flight for light , 2008, Nature.

[44]  Wim Schoutens,et al.  Efficient Pricing of Contingent Convertibles Under Smile Conform Models , 2011 .

[45]  Jos'e E. Figueroa-L'opez,et al.  Small-time expansions for the transition distributions of Lévy processes , 2008, 0809.0849.

[46]  G. Zaslavsky,et al.  Lévy Flights and Related Topics in Physics , 2013 .

[47]  S. Levendorskii,et al.  Barrier options and touch- and-out options under regular Lévy processes of exponential type , 2002 .

[48]  Ernesto Mordecki,et al.  Adaptive Weak Approximation of Diffusions with Jumps , 2008, SIAM J. Numer. Anal..

[49]  A. Kyprianou Introductory Lectures on Fluctuations of Lévy Processes with Applications , 2006 .

[50]  N. L. Johnson,et al.  The Moment Problem for Unimodal Distributions , 1951 .

[51]  P Hänggi,et al.  Lévy-Brownian motion on finite intervals: Mean first passage time analysis. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Aleksei V. Chechkin,et al.  Barrier crossing of a Lévy flight , 2005 .

[53]  Fast valuation and calibration of credit default swaps under Lévy dynamics , 2010 .

[54]  P. Protter Stochastic integration and differential equations , 1990 .

[55]  K. Górska,et al.  Lévy stable two-sided distributions: exact and explicit densities for asymmetric case. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Simon Benhamou,et al.  How many animals really do the Lévy walk? , 2008, Ecology.

[57]  S. Taylor,et al.  LÉVY PROCESSES (Cambridge Tracts in Mathematics 121) , 1998 .

[58]  C. Mallows,et al.  A Method for Simulating Stable Random Variables , 1976 .

[59]  F. Comte,et al.  Nonparametric adaptive estimation for pure jump Lévy processes , 2008, 0806.3371.

[60]  R. Wolpert Lévy Processes , 2000 .