Rebooting Our Computing Models

Innovative and new computing paradigms must be considered as we reach the limits of von Neumann computing caused by the growth in necessary data processing. This paper provides an introduction to three emerging computing models that have established themselves as likely post-CMOS and post-von Neumann solutions. The first of these ideas is quantum computing, for which we discuss the challenges and potential of quantum computer architectures. Next, a computational system using intrinsic oscillators is introduced and an example is provided which shows its superiority in comparison to a typical von Neumann computational system. Finally, digital memcomputing using self-organizing logic gates is explained and then discussed as a method for optimization problems and machine learning.

[1]  Shimeng Yu,et al.  Neuro-Inspired Computing With Emerging Nonvolatile Memorys , 2018, Proceedings of the IEEE.

[2]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[3]  Dmitri E. Nikonov,et al.  Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated Circuits , 2015, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[4]  Fabio L. Traversa,et al.  Memcomputing: Leveraging memory and physics to compute efficiently , 2018, ArXiv.

[5]  Wolfgang Porod,et al.  Device and Architecture Outlook for Beyond CMOS Switches , 2010, Proceedings of the IEEE.

[6]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[7]  Fabio L. Traversa,et al.  MemComputing: An efficient topological computing paradigm , 2017, 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS).

[8]  Suman Datta,et al.  Vertex coloring of graphs via phase dynamics of coupled oscillatory networks , 2016, Scientific Reports.

[9]  Damien Querlioz,et al.  Spintronic nanoscillators for unconventional circuits , 2017, 2017 European Conference on Circuit Theory and Design (ECCTD).

[10]  S. Datta,et al.  Ultra low power coupled oscillator arrays for computer vision applications , 2016, 2016 IEEE Symposium on VLSI Technology.

[11]  Rolf Drechsler,et al.  A PLiM Computer for the Internet of Things , 2017, Computer.

[12]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[13]  Christof Teuscher,et al.  The Weird, the Small, and the Uncontrollable: Redefining the Frontiers of Computing , 2017, Computer.

[14]  Mark S. Lundstrom,et al.  Sub-10 nm carbon nanotube transistor , 2011, 2011 International Electron Devices Meeting.

[15]  Fabio L. Traversa,et al.  Absence of chaos in Digital Memcomputing Machines with solutions , 2017, ArXiv.

[16]  Fabio L. Traversa,et al.  Taming a nonconvex landscape with dynamical long-range order: Memcomputing Ising benchmarks. , 2018, Physical review. E.

[17]  Fabio L. Traversa,et al.  Accelerating Deep Learning with Memcomputing , 2018, Neural Networks.

[18]  Igor L. Markov,et al.  Limits on fundamental limits to computation , 2014, Nature.

[19]  Fabio L. Traversa,et al.  MemComputing Integer Linear Programming , 2018, ArXiv.

[20]  Jason Hoffman,et al.  Ferroelectric Field Effect Transistors for Memory Applications , 2010, Advanced materials.

[21]  Massimiliano Di Ventra,et al.  Experimental demonstration of associative memory with memristive neural networks , 2009, Neural Networks.

[22]  Shimeng Yu,et al.  On-Chip Sparse Learning Acceleration With CMOS and Resistive Synaptic Devices , 2015, IEEE Transactions on Nanotechnology.

[23]  Massimiliano Di Ventra,et al.  Absence of periodic orbits in digital memcomputing machines with solutions. , 2017, Chaos.

[24]  R. Feynman Simulating physics with computers , 1999 .

[25]  Fabio L. Traversa,et al.  Universal Memcomputing Machines , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[26]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[27]  Ian O'Connor,et al.  Computing with ferroelectric FETs: Devices, models, systems, and applications , 2018, 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[28]  Damien Querlioz,et al.  A neural network based on synchronized pairs of nano-oscillators , 2017, 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO).

[29]  Fabio L. Traversa,et al.  Evidence of an exponential speed-up in the solution of hard optimization problems , 2017, Complex..

[30]  Giacomo Indiveri,et al.  Frontiers in Neuromorphic Engineering , 2011, Front. Neurosci..

[31]  Giovanni De Micheli,et al.  Advanced system on a chip design based on controllable-polarity FETs , 2014, 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[32]  Ivica Kostanic,et al.  Principles of Neurocomputing for Science and Engineering , 2000 .

[33]  Giovanni De Micheli,et al.  The Programmable Logic-in-Memory (PLiM) computer , 2016, 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[34]  Giovanni De Micheli,et al.  Configurable Circuits Featuring Dual-Threshold-Voltage Design With Three-Independent-Gate Silicon Nanowire FETs , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[35]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[36]  Shimeng Yu,et al.  NbOx based oscillation neuron for neuromorphic computing , 2017 .

[37]  Kaushik Roy,et al.  X-SRAM: Enabling In-Memory Boolean Computations in CMOS Static Random Access Memories , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[38]  Fabio L. Traversa,et al.  Topological Field Theory and Computing with Instantons , 2016, ArXiv.

[39]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[40]  Zhuo Wang,et al.  In-Memory Computation of a Machine-Learning Classifier in a Standard 6T SRAM Array , 2017, IEEE Journal of Solid-State Circuits.

[41]  Fabio L. Traversa,et al.  Memcomputing Numerical Inversion With Self-Organizing Logic Gates , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[42]  Massimiliano Di Ventra,et al.  Polynomial-time solution of prime factorization and NP-hard problems with digital memcomputing machines , 2015, Chaos.

[43]  Gert Cauwenberghs,et al.  Neuromorphic Silicon Neuron Circuits , 2011, Front. Neurosci.

[44]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[45]  V. Kamakoti,et al.  An Accuracy Tunable Non-Boolean Co-Processor Using Coupled Nano-Oscillators , 2017, ACM J. Emerg. Technol. Comput. Syst..

[46]  Dhiraj K. Pradhan,et al.  Design Automation and Test in Europe (DATE) , 2014 .

[47]  Narayanan Vijaykrishnan,et al.  Computational Architectures Based on Coupled Oscillators , 2014, 2014 IEEE Computer Society Annual Symposium on VLSI.

[48]  Christof Teuscher,et al.  Feedforward Chemical Neural Network : An In Silico Chemical System , 2018 .

[49]  Renyuan Zhang,et al.  CMOS supporting circuitries for nano-oscillator-based associative memories , 2012, 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications.

[50]  Steven H. Adachi,et al.  Application of Quantum Annealing to Training of Deep Neural Networks , 2015, ArXiv.

[51]  S. Datta,et al.  Pairwise coupled hybrid vanadium dioxide-MOSFET (HVFET) oscillators for non-boolean associative computing , 2014, 2014 IEEE International Electron Devices Meeting.

[52]  Anand Raghunathan,et al.  Computing in Memory With Spin-Transfer Torque Magnetic RAM , 2017, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[53]  Jan M. Rabaey,et al.  Brain-inspired computing exploiting carbon nanotube FETs and resistive RAM: Hyperdimensional computing case study , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[54]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[55]  Fabio L. Traversa,et al.  Instantons in self-organizing logic gates , 2017, ArXiv.

[56]  Ameer Haj-Ali,et al.  IMAGING: In-Memory AlGorithms for Image processiNG , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[57]  E. Vianello,et al.  Role of synaptic variability in resistive memory-based spiking neural networks with unsupervised learning , 2018, Journal of Physics D: Applied Physics.

[58]  Fabio L. Traversa,et al.  On the Universality of Memcomputing Machines , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[59]  Massimiliano Di Ventra,et al.  The parallel approach , 2013 .