Some universal limits for nonhomogeneous birth and death processes
暂无分享,去创建一个
[1] A I Zeifman. On the estimation of probabilities for birth and death process. , 1995, Journal of applied probability.
[2] Antonio Di Crescenzo,et al. Diffusion approximation to a queueing system with time-dependent arrival and service rates , 1995, Queueing Syst. Theory Appl..
[3] Avishai Mandelbaum,et al. Strong Approximations for Time-Dependent Queues , 1995, Math. Oper. Res..
[4] Truncation error in a birth and death system , 1990 .
[5] Alexander I. Zeifman,et al. The N-limit of spectral gap of a class of birth-death Markov chains , 2000 .
[6] Stability for continuous-time nonhomogeneous Markov chains , 1985 .
[7] M. Kreĭn,et al. Stability of Solutions of Differential Equations in Banach Spaces , 1974 .
[8] Alexander I. Zeifman. Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes , 1995 .
[9] F. Simonot. Sur l'approximation de la distribution stationnaire d'une chaîne de Markov stochastiquement monotone , 1995 .
[10] Boris L. Granovsky,et al. Nonstationary Queues: Estimation of the Rate of Convergence , 2003, Queueing Syst. Theory Appl..
[11] W. A. Massey,et al. An Analysis of the Modified Offered-Load Approximation for the Nonstationary Erlang Loss Model , 1994 .
[12] Barbara Haas Margolius,et al. A sample path analysis of the Mt/Mt/c queue , 1999, Queueing Syst. Theory Appl..