A "holistic" kinesin phylogeny reveals new kinesin families and predicts protein functions.

Kinesin superfamily proteins are ubiquitous to all eukaryotes and essential for several key cellular processes. With the establishment of genome sequence data for a substantial number of eukaryotes, it is now possible for the first time to analyze the complete kinesin repertoires of a diversity of organisms from most eukaryotic kingdoms. Such a "holistic" approach using 486 kinesin-like sequences from 19 eukaryotes and analyzed by Bayesian techniques, identifies three new kinesin families, two new phylum-specific groups, and unites two previously identified families. The paralogue distribution suggests that the eukaryotic cenancestor possessed nearly all kinesin families. However, multiple losses in individual lineages mean that no family is ubiquitous to all organisms and that the present day distribution reflects common biology more than it does common ancestry. In particular, the distribution of four families--Kinesin-2, -9, and the proposed new families Kinesin-16 and -17--correlates with the possession of cilia/flagella, and this can be used to predict a flagellar function for two new kinesin families. Finally, we present a set of hidden Markov models that can reliably place most new kinesin sequences into families, even when from an organism at a great evolutionary distance from those in the analysis.

[1]  Russell L. Malmberg,et al.  Maximum Likelihood Methods Reveal Conservation of Function Among Closely Related Kinesin Families , 2002, Journal of Molecular Evolution.

[2]  Fabienne Thomarat,et al.  Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi , 2001, Nature.

[3]  B. Wickstead,et al.  More than one way to build a flagellum: comparative genomics of parasitic protozoa , 2004, Current Biology.

[4]  Fumiko Ohta,et al.  Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D , 2004, Nature.

[5]  David L. Steffen,et al.  The genome of the social amoeba Dictyostelium discoideum , 2005, Nature.

[6]  J. Moore,et al.  Kinesin proteins: A phylum of motors for microtubule‐based motility , 1996, BioEssays : news and reviews in molecular, cellular and developmental biology.

[7]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[8]  F. Delsuc,et al.  The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[10]  S. Endow,et al.  Determinants of kinesin motor polarity. , 1998, Science.

[11]  J. Huelsenbeck,et al.  Potential applications and pitfalls of Bayesian inference of phylogeny. , 2002, Systematic biology.

[12]  Ronald D Vale,et al.  The Directional Preference of Kinesin Motors Is Specified by an Element outside of the Motor Catalytic Domain , 1997, Cell.

[13]  H. Goodson,et al.  Molecular phylogeny of the kinesin family of microtubule motor proteins. , 1994, Journal of cell science.

[14]  A. Simpson,et al.  The real ‘kingdoms’ of eukaryotes , 2004, Current Biology.

[15]  Ping Xu,et al.  Complete Genome Sequence of the Apicomplexan, Cryptosporidium parvum , 2004, Science.

[16]  J. Donelson,et al.  The Genome of the African Trypanosome , 2002 .

[17]  I. Vernos,et al.  Role of Xklp3, a Subunit of the Xenopus Kinesin II Heterotrimeric Complex, in Membrane Transport between the Endoplasmic Reticulum and the Golgi Apparatus , 1998, The Journal of cell biology.

[18]  S. Endow,et al.  A kinesin family tree. , 2000, Journal of cell science.

[19]  Carolyn J. Lawrence-Dill,et al.  Dyneins Have Run Their Course in Plant Lineage , 2001, Traffic.

[20]  Heather J Munden,et al.  The Genome of the Kinetoplastid Parasite, Leishmania major , 2005, Science.

[21]  T. Cavalier-smith,et al.  Myosin domain evolution and the primary divergence of eukaryotes , 2005, Nature.

[22]  X. Cui,et al.  Kinesin family member 12 is a candidate polycystic kidney disease modifier in the cpk mouse. , 2005, Journal of the American Society of Nephrology : JASN.

[23]  I. Vernos,et al.  Kinesin II Mediates Vg1 mRNA Transport in Xenopus Oocytes , 2004, Current Biology.

[24]  L. Goldstein,et al.  Understanding the functions of kinesin-II. , 2000, Biochimica et biophysica acta.

[25]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[26]  S. Baldauf,et al.  Phylogeny for the faint of heart: a tutorial. , 2003, Trends in genetics : TIG.

[27]  S. Siddiqui Metazoan Motor Models: Kinesin Superfamily inC. elegans , 2002, Traffic.

[28]  M. Holder,et al.  Phylogeny estimation: traditional and Bayesian approaches , 2003, Nature Reviews Genetics.

[29]  Bernard B. Suh,et al.  The genome of the protist parasite Entamoeba histolytica , 2005, Nature.

[30]  I. Vernos,et al.  Heterotrimeric Kinesin II Is the Microtubule Motor Protein Responsible for Pigment Dispersion in Xenopus Melanophores , 1998, The Journal of cell biology.

[31]  B. Barrell,et al.  The genome sequence of Schizosaccharomyces pombe , 2002, Nature.

[32]  J. Bergsten A review of long‐branch attraction , 2005, Cladistics : the international journal of the Willi Hennig Society.

[33]  M. Katoh,et al.  Characterization of KIF12 gene in silico. , 2005, Oncology reports.

[34]  S. Whelan,et al.  A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. , 2001, Molecular biology and evolution.

[35]  N. Hirokawa,et al.  Kinesin and dynein superfamily proteins in organelle transport and cell division. , 1998, Current opinion in cell biology.

[36]  N. Galtier,et al.  Maximum-likelihood phylogenetic analysis under a covarion-like model. , 2001, Molecular biology and evolution.

[37]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[38]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[39]  Russell L. Malmberg,et al.  A standardized kinesin nomenclature , 2004, The Journal of cell biology.

[40]  Neil Hall,et al.  Genome of the Host-Cell Transforming Parasite Theileria annulata Compared with T. parva , 2005, Science.

[41]  D. Haussler,et al.  Hidden Markov models in computational biology. Applications to protein modeling. , 1993, Journal of molecular biology.

[42]  N. Hirokawa,et al.  Kinesin superfamily proteins and their various functions and dynamics. , 2004, Experimental cell research.

[43]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[44]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[45]  S. Endow,et al.  A new kinesin tree , 2004, Journal of Cell Science.

[46]  Nobutaka Hirokawa,et al.  Analysis of the kinesin superfamily: insights into structure and function. , 2005, Trends in cell biology.

[47]  M. Scott,et al.  Costal2, a Novel Kinesin-Related Protein in the Hedgehog Signaling Pathway , 1997, Cell.

[48]  Jun Fan,et al.  A role for the spectrin superfamily member Syne-1 and kinesin II in cytokinesis , 2004, Journal of Cell Science.

[49]  Peer Bork,et al.  SMART 4.0: towards genomic data integration , 2004, Nucleic Acids Res..

[50]  M. Kollmar,et al.  Identification and phylogenetic analysis of Dictyostelium discoideum kinesin proteins , 2003, BMC Genomics.

[51]  E. O'Toole,et al.  Regulation of flagellar dynein activity by a central pair kinesin. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Vladimir Gelfand,et al.  Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[53]  T. Cavalier-smith Only six kingdoms of life , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[54]  David M. A. Martin,et al.  The Genome of the African Trypanosome Trypanosoma brucei , 2005, Science.

[55]  P. Beech,et al.  A new kinesin-like protein (Klp1) localized to a single microtubule of the Chlamydomonas flagellum , 1994, The Journal of cell biology.

[56]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.