A Challenge: Support of Standing Balance in Assistive Robotic Devices

[1]  Georg Hettich,et al.  Visual contribution to human standing balance during support surface tilts , 2015, Human movement science.

[2]  Santosh Lal,et al.  Premature degenerative shoulder changes in spinal cord injury patients , 1998, Spinal Cord.

[3]  Mukul Talaty,et al.  Differentiating ability in users of the ReWalkTM powered exoskeleton: An analysis of walking kinematics , 2013, 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR).

[4]  André Seyfarth,et al.  Review of balance recovery in response to external perturbations during daily activities. , 2020, Human movement science.

[5]  H. F. Machiel Van der Loos,et al.  Studies on Practical Applications of Safe-Fall Control Strategies for Lower Limb Exoskeletons , 2019, 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR).

[6]  T. Mergner,et al.  Human stance control beyond steady state response and inverted pendulum simplification , 2008, Experimental Brain Research.

[7]  François Michaud,et al.  Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury , 2016, Disability and rehabilitation. Assistive technology.

[8]  Nikolaos G. Tsagarakis,et al.  Benchmarking Bipedal Locomotion: A Unified Scheme for Humanoids, Wearable Robots, and Humans , 2015, IEEE Robotics & Automation Magazine.

[9]  G. Francisco,et al.  Exoskeleton-assisted gait training to improve gait in individuals with spinal cord injury: a pilot randomized study , 2018, Pilot and Feasibility Studies.

[10]  Massimo Bergamasco,et al.  Body Extender: Whole body exoskeleton for human power augmentation , 2011, 2011 IEEE International Conference on Robotics and Automation.

[11]  Vittorio Lippi,et al.  Human-Derived Disturbance Estimation and Compensation (DEC) Method Lends Itself to a Modular Sensorimotor Control in a Humanoid Robot , 2017, Front. Neurorobot..

[12]  Edwin van Asseldonk,et al.  Improving the Standing Balance of Paraplegics through the Use of a Wearable Exoskeleton , 2018, 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob).

[13]  Tingfang Yan,et al.  Review of assistive strategies in powered lower-limb orthoses and exoskeletons , 2015, Robotics Auton. Syst..

[14]  Vittorio Lippi,et al.  Posture Control—Human-Inspired Approaches for Humanoid Robot Benchmarking: Conceptualizing Tests, Protocols and Analyses , 2018, Front. Neurorobot..

[15]  Allan Joshua Veale,et al.  Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies. , 2016, Medical engineering & physics.

[16]  Edwin H F van Asseldonk,et al.  Effects of a powered ankle-foot orthosis on perturbed standing balance , 2018, Journal of NeuroEngineering and Rehabilitation.

[17]  Thomas Mergner,et al.  Vestibular humanoid postural control , 2009, Journal of Physiology-Paris.

[18]  Thomas Mergner,et al.  A neurological view on reactive human stance control , 2010, Annu. Rev. Control..

[19]  Vittorio Lippi Prediction in the context of a human-inspired posture control model , 2018, Robotics Auton. Syst..

[20]  Thomas Mergner,et al.  Posture Control in Vestibular‐Loss Patients , 2009, Annals of the New York Academy of Sciences.

[21]  Russ Tedrake,et al.  Localizing external contact using proprioceptive sensors: The Contact Particle Filter , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[22]  Sujay S Galen,et al.  Robotic exoskeletons for reengaging in everyday activities: promises, pitfalls, and opportunities , 2019, Disability and rehabilitation.

[23]  Vittorio Lippi,et al.  Human-Inspired Humanoid Balancing and Posture Control in Frontal Plane , 2016 .

[24]  Vittorio Lippi,et al.  Postural balance using a disturbance rejection method , 2017, 2017 11th International Workshop on Robot Motion and Control (RoMoCo).

[25]  F. Horak,et al.  Central programming of postural movements: adaptation to altered support-surface configurations. , 1986, Journal of neurophysiology.

[26]  H. F. Machiel Van der Loos,et al.  Developing safe fall strategies for lower limb exoskeletons , 2017, 2017 International Conference on Rehabilitation Robotics (ICORR).

[27]  Doyoung Jeon,et al.  A research on the postural stability of a person wearing the lower limb exoskeletal robot by the HAT model , 2017, 2017 International Conference on Rehabilitation Robotics (ICORR).

[28]  Christopher G. Atkeson,et al.  Multiple balance strategies from one optimization criterion , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[29]  Georg Hettich,et al.  Human hip-ankle coordination emerging from multisensory feedback control. , 2014, Human movement science.

[30]  José Luis Pons Rovira,et al.  An adaptive control strategy for postural stability using a wearable robot , 2015, Robotics Auton. Syst..

[31]  Günter Hommel,et al.  A Human--Exoskeleton Interface Utilizing Electromyography , 2008, IEEE Transactions on Robotics.

[32]  S Glasauer,et al.  A Simple Model of Vestibular Canal‐Otolith Signal Fusion , 1999, Annals of the New York Academy of Sciences.

[33]  Vittorio Lippi,et al.  Human-Like Sensor Fusion Implemented in the Posture Control of a Bipedal Robot , 2015 .

[34]  Vittorio Lippi,et al.  Lyapunov Stability of a Nonlinear Bio-inspired System for the Control of Humanoid Balance , 2020, ICINCO.

[35]  Dennis R. Louie,et al.  Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study , 2015, Journal of NeuroEngineering and Rehabilitation.

[36]  Vincent Padois,et al.  Whole-body multi-contact motion in humans and humanoids: Advances of the CoDyCo European project , 2017, Robotics Auton. Syst..