Thermodynamically stable lithium silicides and germanides from density functional theory calculations
暂无分享,去创建一个
[1] Chris J. Pickard,et al. Hydrogen/nitrogen/oxygen defect complexes in silicon from computational searches , 2009 .
[2] H. Schäfer,et al. Notizen: Die Kristallstruktur von LiGe — ein neuartiger, dreidimensionaler Verband von Element(IV)-atomen , 1969 .
[3] Linda F. Nazar,et al. The true crystal structure of Li17M4 (M=Ge, Sn, Pb)-revised from Li22M5 , 2001 .
[4] W. J. Ramsey,et al. Intermetallic Compounds between Lithium and Lead. II. The Crystal Structure of Li8Pb3. , 1956 .
[5] Sehee Lee,et al. Hierarchical Porous Framework of Si‐Based Electrodes for Minimal Volumetric Expansion , 2014, Advanced materials.
[6] C. S. Barrett. A Low Temperature Transformation in Lithium , 1947 .
[7] Rangeet Bhattacharyya,et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.
[8] J. Rogers,et al. Si/Ge double-layered nanotube array as a lithium ion battery anode. , 2012, ACS nano.
[9] Chris J Pickard,et al. Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.
[10] A. J. Morris,et al. Lithiation of silicon via lithium Zintl-defect complexes from first principles , 2013, 1305.6265.
[11] A. Pelton,et al. The Ge- Li (Germanium-Lithium) system , 1997 .
[12] A. Sammells,et al. Thermodynamic Studies of Li‐Ge Alloys: Application to Negative Electrodes for Molten Salt Batteries , 1982 .
[13] A. J. Morris,et al. Trapping of He in intrinsic defects in zirconolite , 2013 .
[14] Vincent Chevrier,et al. First Principles Model of Amorphous Silicon Lithiation , 2009 .
[15] A. Majumdar,et al. Opportunities and challenges for a sustainable energy future , 2012, Nature.
[16] Dorothy M. Duffy,et al. Ab initio study of intrinsic defects in zirconolite , 2011 .
[17] R. Nesper,et al. Li12Si7, eine Verbindung mit trigonal‐planaren Si4‐Clustern und isometrischen Si5‐Ringen , 1986 .
[18] Synthesis and revised structure of the Zintl phase Li7Ge12 , 2011 .
[19] Vincent Chevrier,et al. First Principles Studies of Disordered Lithiated Silicon , 2010 .
[20] Young-Il Jang,et al. Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .
[21] J. Dahn,et al. First principles studies of silicon as a negative electrode material for lithium-ion batteries , 2009 .
[22] H. Schäfer,et al. Die Struktur der Phase Li7Ge2 / The Structure of Li7Ge2 , 1972 .
[23] J. Chotard,et al. Synthesis of Single-Phase LiSi by Ball-Milling: Electrochemical Behavior and Hydrogenation Properties , 2013 .
[24] M. Braga,et al. Li–Si phase diagram: Enthalpy of mixing, thermodynamic stability, and coherent assessment , 2014 .
[25] Cheol‐Min Park,et al. Electrochemical Characterizations of Germanium and Carbon-Coated Germanium Composite Anode for Lithium-Ion Batteries , 2008 .
[26] Richard G. Hennig,et al. Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials , 2013 .
[27] R. Huggins,et al. Chemical diffusion in intermediate phases in the lithium-silicon system. [415/sup 0/C] , 1981 .
[28] Vincent Chevrier,et al. First principles study of Li–Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations , 2010 .
[29] Artur F Izmaylov,et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.
[30] J. Dahn,et al. Ab initio calculation of the lithium-tin voltage profile , 1998 .
[31] Sehee Lee,et al. Microstructural evolution induced by micro-cracking during fast lithiation of single-crystalline silicon , 2014 .
[32] C. J. Kerr,et al. Revealing lithium–silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy , 2014, Nature Communications.
[33] Chris J. Pickard,et al. Hydrogen/silicon complexes in silicon from computational searches , 2008, 0808.1203.
[34] J. Tarascon,et al. Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. , 2011, Journal of the American Chemical Society.
[35] A. J. Morris,et al. Inorganic double-helix structures of unusually simple lithium-phosphorus species. , 2012, Angewandte Chemie.
[36] I. Barvík. To the magnetic properties of Li2·33Si , 1983 .
[37] R. Nesper,et al. Novel Metastable Germanium Modifications allo‐Ge and 4H‐Ge from Li7Ge12 , 1982 .
[38] U. Frank,et al. Darstellung und Struktur der Phase Li13Sn5 und die strukturelle Verwandtschaft der Phasen in den Systemen Li-Sn und Li-Pb / The Preparation and Crystal Structure of Li13Sn5 and the Structural Relations Between the Phases of the Systems Li-Sn and Li-Pb , 1975 .
[39] Gerbrand Ceder,et al. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .
[40] Jing Li,et al. An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .
[41] E. Pell. Solubility of Lithium in germanium , 1957 .
[42] J. Evers,et al. Hochdruck-LiGe mit Schichten aus zwei- und vierbindigen Germaniumatomen† , 1987 .
[43] Candace K. Chan,et al. High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.
[44] Electronic structure of LiSi , 2008 .
[45] Chris J. Pickard,et al. Energetics of hydrogen/lithium complexes in silicon analyzed using the Maxwell construction , 2011, 1201.4940.
[46] T. Fässler,et al. Single Crystal Growth and Thermodynamic Stability of Li17Si4 , 2013 .
[47] P. Kumta,et al. High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries , 2003 .
[48] H. Nakanishi,et al. Crystal and electronic structure of Li15Si4 , 2007 .
[49] Jae-Hun Kim,et al. Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.
[50] G. Hwang,et al. On the origin of the significant difference in lithiation behavior between silicon and germanium , 2014 .
[51] Paul F. McMillan,et al. Lithium monosilicide (LiSi), a low-dimensional silicon-based material prepared by high pressure synthesis: NMR and vibrational spectroscopy and electrical properties characterization , 2003 .
[52] A. Jain,et al. Destabilization of LiH by Li Insertion into Ge , 2013 .
[53] K. Cenzual,et al. Overlooked trigonal symmetry in structures reported with monoclinic centred Bravais lattices; trigonal description of Li8Pb3, PtTe, Pt3Te4, Pt2Te3, LiFe6Ge4, LiFe6Ge5, CaGa6Te10 and La3.266Mn1.1S6 , 1990 .
[54] Seung M. Oh,et al. Performance of electrochemically generated Li21Si5 phase for lithium-ion batteries , 2010 .
[55] Matt Probert,et al. First principles methods using CASTEP , 2005 .
[56] Yong‐Mook Kang,et al. First-principle calculation-assisted structural study on the nanoscale phase transition of Si for Li-ion secondary batteries. , 2009, Inorganic chemistry.
[57] Mark N. Obrovac,et al. Structural changes in silicon anodes during lithium insertion/extraction , 2004 .
[58] Mark N. Obrovac,et al. Reversible Cycling of Crystalline Silicon Powder , 2007 .
[59] S. Lai. Solid Lithium‐Silicon Electrode , 1976 .
[60] H. Okamoto. Li-Si (Lithium-Silicon) , 2009 .
[61] T. D. Hatchard,et al. In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .
[62] D. H. Wood,et al. The crystal structure of Li15Ge4 , 1965 .
[63] T. Fässler,et al. Revision of the Li–Si Phase Diagram: Discovery and Single-Crystal X-ray Structure Determination of the High-Temperature Phase Li4.11Si , 2013 .
[64] Margret Wohlfahrt-Mehrens,et al. A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries , 1999 .
[65] R. Nesper,et al. Li8MgSi6, a novel Zintl compound containing quasi-aromatic Si5 rings , 1986 .
[66] Chris J Pickard,et al. High-pressure phases of silane. , 2006, Physical review letters.
[67] Reinhard Nesper,et al. Li21Si5, a Zintl phase as well as a Hume-Rothery phase , 1987 .
[68] Chuang Yue,et al. The effects of different core-shell structures on the electrochemical performances of Si-Ge nanorod arrays as anodes for micro-lithium ion batteries. , 2014, ACS applied materials & interfaces.
[69] Bo Liang,et al. Silicon-based materials as high capacity anodes for next generation lithium ion batteries , 2014 .
[70] N. Dudney,et al. Electrochemically-driven solid-state amorphization in lithium–metal anodes , 2003 .