Thermodynamically stable lithium silicides and germanides from density functional theory calculations

High-throughput density functional theory (DFT) calculations have been performed on the Li-Si and Li-Ge systems. Lithiated Si and Ge, including their metastable phases, play an important technological role as Li-ion battery (LIB) anodes. The calculations comprise structural optimizations on crystal structures obtained by swapping atomic species to Li-Si and Li-Ge from the $X\ensuremath{-}Y$ structures in the International Crystal Structure Database, where $X={\text{Li,}\phantom{\rule{4.pt}{0ex}}\text{Na,}\phantom{\rule{4.pt}{0ex}}\text{K,}\phantom{\rule{4.pt}{0ex}}\text{Rb,}\phantom{\rule{4.pt}{0ex}}\text{Cs}}$ and $Y={\text{Si,}\phantom{\rule{4.pt}{0ex}}\text{Ge,}\phantom{\rule{4.pt}{0ex}}\text{Sn,}\phantom{\rule{4.pt}{0ex}}\text{Pb}}$. To complement this at various Li-Si and Li-Ge stoichiometries, ab initio random structure searching (AIRSS) was also performed. Between the ground-state stoichiometries, including the recently found ${\mathrm{Li}}_{17}{\mathrm{Si}}_{4}$ phase, the average voltages were calculated, indicating that germanium may be a safer alternative to silicon anodes in LIB due to its higher lithium insertion voltage. Calculations predict high-density ${\mathrm{Li}}_{1}{\mathrm{Si}}_{1}$ and ${\mathrm{Li}}_{1}{\mathrm{Ge}}_{1}$ $P4/mmm$ layered phases which become the ground states above 2.5 and 5 GPa, respectively, and reveal silicon and germanium's propensity to form dumbbells in the ${\mathrm{Li}}_{x}\mathrm{Si}$, $x=2.33$\char21{}3.25, stoichiometry range. DFT predicts the stability of the ${\mathrm{Li}}_{11}{\mathrm{Ge}}_{6}$ $Cmmm$, ${\mathrm{Li}}_{12}{\mathrm{Ge}}_{7}$ $Pnma$, and ${\mathrm{Li}}_{7}{\mathrm{Ge}}_{3}$ $P{32}_{1}2$ phases and several new Li-Ge compounds, with stoichiometries ${\mathrm{Li}}_{5}{\mathrm{Ge}}_{2}$, ${\mathrm{Li}}_{13}{\mathrm{Ge}}_{5}$, ${\mathrm{Li}}_{8}{\mathrm{Ge}}_{3}$ and ${\mathrm{Li}}_{13}{\mathrm{Ge}}_{4}$.

[1]  Chris J. Pickard,et al.  Hydrogen/nitrogen/oxygen defect complexes in silicon from computational searches , 2009 .

[2]  H. Schäfer,et al.  Notizen: Die Kristallstruktur von LiGe — ein neuartiger, dreidimensionaler Verband von Element(IV)-atomen , 1969 .

[3]  Linda F. Nazar,et al.  The true crystal structure of Li17M4 (M=Ge, Sn, Pb)-revised from Li22M5 , 2001 .

[4]  W. J. Ramsey,et al.  Intermetallic Compounds between Lithium and Lead. II. The Crystal Structure of Li8Pb3. , 1956 .

[5]  Sehee Lee,et al.  Hierarchical Porous Framework of Si‐Based Electrodes for Minimal Volumetric Expansion , 2014, Advanced materials.

[6]  C. S. Barrett A Low Temperature Transformation in Lithium , 1947 .

[7]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[8]  J. Rogers,et al.  Si/Ge double-layered nanotube array as a lithium ion battery anode. , 2012, ACS nano.

[9]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  A. J. Morris,et al.  Lithiation of silicon via lithium Zintl-defect complexes from first principles , 2013, 1305.6265.

[11]  A. Pelton,et al.  The Ge- Li (Germanium-Lithium) system , 1997 .

[12]  A. Sammells,et al.  Thermodynamic Studies of Li‐Ge Alloys: Application to Negative Electrodes for Molten Salt Batteries , 1982 .

[13]  A. J. Morris,et al.  Trapping of He in intrinsic defects in zirconolite , 2013 .

[14]  Vincent Chevrier,et al.  First Principles Model of Amorphous Silicon Lithiation , 2009 .

[15]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[16]  Dorothy M. Duffy,et al.  Ab initio study of intrinsic defects in zirconolite , 2011 .

[17]  R. Nesper,et al.  Li12Si7, eine Verbindung mit trigonal‐planaren Si4‐Clustern und isometrischen Si5‐Ringen , 1986 .

[18]  Synthesis and revised structure of the Zintl phase Li7Ge12 , 2011 .

[19]  Vincent Chevrier,et al.  First Principles Studies of Disordered Lithiated Silicon , 2010 .

[20]  Young-Il Jang,et al.  Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .

[21]  J. Dahn,et al.  First principles studies of silicon as a negative electrode material for lithium-ion batteries , 2009 .

[22]  H. Schäfer,et al.  Die Struktur der Phase Li7Ge2 / The Structure of Li7Ge2 , 1972 .

[23]  J. Chotard,et al.  Synthesis of Single-Phase LiSi by Ball-Milling: Electrochemical Behavior and Hydrogenation Properties , 2013 .

[24]  M. Braga,et al.  Li–Si phase diagram: Enthalpy of mixing, thermodynamic stability, and coherent assessment , 2014 .

[25]  Cheol‐Min Park,et al.  Electrochemical Characterizations of Germanium and Carbon-Coated Germanium Composite Anode for Lithium-Ion Batteries , 2008 .

[26]  Richard G. Hennig,et al.  Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials , 2013 .

[27]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-silicon system. [415/sup 0/C] , 1981 .

[28]  Vincent Chevrier,et al.  First principles study of Li–Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations , 2010 .

[29]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[30]  J. Dahn,et al.  Ab initio calculation of the lithium-tin voltage profile , 1998 .

[31]  Sehee Lee,et al.  Microstructural evolution induced by micro-cracking during fast lithiation of single-crystalline silicon , 2014 .

[32]  C. J. Kerr,et al.  Revealing lithium–silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy , 2014, Nature Communications.

[33]  Chris J. Pickard,et al.  Hydrogen/silicon complexes in silicon from computational searches , 2008, 0808.1203.

[34]  J. Tarascon,et al.  Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. , 2011, Journal of the American Chemical Society.

[35]  A. J. Morris,et al.  Inorganic double-helix structures of unusually simple lithium-phosphorus species. , 2012, Angewandte Chemie.

[36]  I. Barvík To the magnetic properties of Li2·33Si , 1983 .

[37]  R. Nesper,et al.  Novel Metastable Germanium Modifications allo‐Ge and 4H‐Ge from Li7Ge12 , 1982 .

[38]  U. Frank,et al.  Darstellung und Struktur der Phase Li13Sn5 und die strukturelle Verwandtschaft der Phasen in den Systemen Li-Sn und Li-Pb / The Preparation and Crystal Structure of Li13Sn5 and the Structural Relations Between the Phases of the Systems Li-Sn and Li-Pb , 1975 .

[39]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[40]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[41]  E. Pell Solubility of Lithium in germanium , 1957 .

[42]  J. Evers,et al.  Hochdruck-LiGe mit Schichten aus zwei- und vierbindigen Germaniumatomen† , 1987 .

[43]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[44]  Electronic structure of LiSi , 2008 .

[45]  Chris J. Pickard,et al.  Energetics of hydrogen/lithium complexes in silicon analyzed using the Maxwell construction , 2011, 1201.4940.

[46]  T. Fässler,et al.  Single Crystal Growth and Thermodynamic Stability of Li17Si4 , 2013 .

[47]  P. Kumta,et al.  High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries , 2003 .

[48]  H. Nakanishi,et al.  Crystal and electronic structure of Li15Si4 , 2007 .

[49]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[50]  G. Hwang,et al.  On the origin of the significant difference in lithiation behavior between silicon and germanium , 2014 .

[51]  Paul F. McMillan,et al.  Lithium monosilicide (LiSi), a low-dimensional silicon-based material prepared by high pressure synthesis: NMR and vibrational spectroscopy and electrical properties characterization , 2003 .

[52]  A. Jain,et al.  Destabilization of LiH by Li Insertion into Ge , 2013 .

[53]  K. Cenzual,et al.  Overlooked trigonal symmetry in structures reported with monoclinic centred Bravais lattices; trigonal description of Li8Pb3, PtTe, Pt3Te4, Pt2Te3, LiFe6Ge4, LiFe6Ge5, CaGa6Te10 and La3.266Mn1.1S6 , 1990 .

[54]  Seung M. Oh,et al.  Performance of electrochemically generated Li21Si5 phase for lithium-ion batteries , 2010 .

[55]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[56]  Yong‐Mook Kang,et al.  First-principle calculation-assisted structural study on the nanoscale phase transition of Si for Li-ion secondary batteries. , 2009, Inorganic chemistry.

[57]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[58]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[59]  S. Lai Solid Lithium‐Silicon Electrode , 1976 .

[60]  H. Okamoto Li-Si (Lithium-Silicon) , 2009 .

[61]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[62]  D. H. Wood,et al.  The crystal structure of Li15Ge4 , 1965 .

[63]  T. Fässler,et al.  Revision of the Li–Si Phase Diagram: Discovery and Single-Crystal X-ray Structure Determination of the High-Temperature Phase Li4.11Si , 2013 .

[64]  Margret Wohlfahrt-Mehrens,et al.  A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries , 1999 .

[65]  R. Nesper,et al.  Li8MgSi6, a novel Zintl compound containing quasi-aromatic Si5 rings , 1986 .

[66]  Chris J Pickard,et al.  High-pressure phases of silane. , 2006, Physical review letters.

[67]  Reinhard Nesper,et al.  Li21Si5, a Zintl phase as well as a Hume-Rothery phase , 1987 .

[68]  Chuang Yue,et al.  The effects of different core-shell structures on the electrochemical performances of Si-Ge nanorod arrays as anodes for micro-lithium ion batteries. , 2014, ACS applied materials & interfaces.

[69]  Bo Liang,et al.  Silicon-based materials as high capacity anodes for next generation lithium ion batteries , 2014 .

[70]  N. Dudney,et al.  Electrochemically-driven solid-state amorphization in lithium–metal anodes , 2003 .