Crowded diphosphinomethane ligands in catalysis: [(R2PCH2PR′2-κ2P)-NiR″]+ cations for ethylene polymerization without activators

The preparation of a series of nickel dichloride complexes with bulky diphosphinomethane chelate ligands R2PCH2PR′2 is reported. Reaction with the appropriate Grignard reagent leads to the corresponding dimethyl and dibenzyl complexes. Cationic monomethyl and mono-η3-benzyl complexes are generated from these dialkyl complexes by protonation with [H(OEt2)2]+[B(3,5-(CF3)2C6H3)4]−, while the complex [(dtbpm κ2P)Ni(η3-CH(CH2Ph)Ph]+[B(3,5-(CF3)2C6H3)4]−is obtained from protonation of the Ni(0) olefin complex (dtbpm-κ2P)N(η2-trans-stilbene). Crystal structures of examples of dichlorides, dimethyl, dibenzyl, cationic methyl, and cationic η3-benzyl complexes are reported. Solutions of the cations polymerize ethylene under mild conditions and without the necessity of an activating agent, to form polyethylene having high molecular weights and low degrees of chain branching. In comparison to the Ni methyl cations, the η3-benzyl cation complexes are more stable and somewhat less active but still very efficient in C2H4 polymerization. The effect on the resulting polyethylene of varying the substituents R, R′ on the phosphine ligand has been examined, and a clear trend for longer chain PE with less branching in the presence of more bulky substituents on the diphosphine has been found. Density functional calculations have been used to examine the rapid suprafacial η3 to η3 haptotropic shift processes of the[(R2PCH2PR′2)Ni] fragment and the η3−η1 change of the coordination mode of the benzyl group required for polymerization in those cations.

[1]  S. Nayak,et al.  Directing role of functional groups in selective generation of C–H⋯π interactions: In situ cryo-crystallographic studies on benzyl derivatives , 2010 .

[2]  S. Titinchi,et al.  Bis(Pyrazolyl)Pyridine Late Transition Metal Complexes as Single-Site Catalysts for Ethylene Polymerization to Highly Linear Polyethylene , 2010 .

[3]  F. Rominger,et al.  Neutral cis-Alkyl Olefin Rhodium(I) Complexes: Models of Intermediates in Late Transition Metal Olefin Polymerization with Surprising Structure† , 2010 .

[4]  Carlo Adamo,et al.  How the choice of a computational model could rule the chemical interpretation: The Ni(II) catalyzed ethylene dimerization as a case study , 2009, J. Comput. Chem..

[5]  K. Nozaki,et al.  Coordination-insertion copolymerization of fundamental polar monomers. , 2009, Chemical reviews.

[6]  D. J. Tempel,et al.  13C NMR Analysis of α-Olefin Enchainment in Poly(α-olefins) Produced with Nickel and Palladium α-Diimine Catalysts , 2007 .

[7]  G. Coates,et al.  Living alkene polymerization : New methods for the precision synthesis of polyolefins , 2007 .

[8]  Jun Zhang,et al.  Polymerized metallocene catalysts and late transition metal catalysts for ethylene polymerization , 2006 .

[9]  G. Mantovani,et al.  Catalytic polymerisation of ethylene with tris(pyrazolyl)borate complexes of late transition metals , 2005 .

[10]  A. Orpen,et al.  Diphosphine Complexes of Nickel(II) Are Efficient Catalysts for the Polymerization and Oligomerization of Ethylene: Steric Activation and Ligand Backbone Effects , 2004 .

[11]  J. Ziller,et al.  Cyclophane-based highly active late-transition-metal catalysts for ethylene polymerization. , 2004, Angewandte Chemie.

[12]  E. Álvarez,et al.  Cationic η3-benzyl nickel compounds with diphosphine ligands as catalyst precursors for ethylene oligomerization/polymerization: influence of the diphosphine bite angle , 2004 .

[13]  P. Hofmann,et al.  Synthesis, Structure, and Reactivity of Cationic Ruthenium(II) Carbene Complexes with Bulky Chelating Bisphosphines: Design of Highly Active Ring Opening Metathesis Polymerization (ROMP) Catalysts , 2004 .

[14]  M. Brookhart,et al.  Polymerization and oligomerization of ethylene by cationic nickel(II) and palladium(II) complexes containing bidentate phenacyldiarylphosphine ligands , 2003 .

[15]  M. Seferin,et al.  η3-Benzyl-nickel-diimine complex: Synthesis and catalytic properties in ethylene polymerization , 2003 .

[16]  David J. Williams,et al.  The role of bulky substituents in the polymerization of ethylene using late transition metal catalysts: a comparative study of nickel and iron catalyst systems , 2003 .

[17]  F. Rominger,et al.  Sterically crowded diphosphinomethane ligands: molecular structures, UV-photoelectron spectroscopy and a convenient general synthesis of tBu2PCH2PtBu2 and related species , 2003 .

[18]  M. Brookhart,et al.  Mechanistic studies of nickel(II) alkyl agostic cations and alkyl ethylene complexes: investigations of chain propagation and isomerization in (alpha-diimine)Ni(II)-catalyzed ethylene polymerization. , 2003, Journal of the American Chemical Society.

[19]  O. Daugulis,et al.  Polymerization of Ethylene with Cationic Palladium and Nickel Catalysts Containing Bulky Nonenolizable Imine−Phosphine Ligands , 2002 .

[20]  M. Brookhart,et al.  Ethylene Polymerization and Ethylene/Methyl 10-Undecenoate Copolymerization Using Nickel(II) and Palladium(II) Complexes Derived from a Bulky P,O Chelating Ligand , 2002 .

[21]  A G Orpen,et al.  Nickel Ethylene Polymerization Catalysts Based on Phosphorus Ligands , 2001 .

[22]  J. DeSimone,et al.  Four- and five-coordinate CO insertion mechanisms in d(8)-nickel(II) complexes. , 2001, Journal of the American Chemical Society.

[23]  P. Hofmann,et al.  Reversible Carbon−Carbon Double Bond Cleavage of a Ketene Ligand at a Single Iridium(I) Center: A Theoretical Study§ , 2001 .

[24]  W. Jones,et al.  Formation of Phenylene Oligomers Using Platinum−Phosphine Complexes , 2001 .

[25]  G. Bazan,et al.  α-Iminocarboxamidato−Nickel(II) Ethylene Polymerization Catalysts , 2001 .

[26]  J. Mague,et al.  Facile reductive elimination of ethane from strained dimethylpalladium(II) complexes. , 2001, Journal of the American Chemical Society.

[27]  Ruiping Wang,et al.  Nickel Indenyl Complexes as Catalysts for the Dimerization and Polymerization of Ethylene , 2001 .

[28]  K. Morokuma,et al.  Density Functional Study of Ethylene Polymerization Catalyzed by a Zirconium Non-Cyclopentadienyl Complex, L2ZrCH3+. Effects of Ligands and Bulky Substituents , 2001 .

[29]  J. DeSimone,et al.  Cationic Four- and Five-Coordinate Nickel(II) Complexes: Insights into the Nickel(II)-Catalyzed Copolymerization of Ethylene and Carbon Monoxide , 2001 .

[30]  F. Rominger,et al.  A trigonal planar mu 3-fluorido coinage metal complex from a dicationic (diphosphinomethane)copper(I) dimer: syntheses, structures, and bonding. , 2000, Inorganic chemistry.

[31]  P. Fanwick,et al.  Synthesis and characterization of a series of novel nickel(II)/nickel(I) complexes. Crystal structures of [NiCl2(dcpm)], [Ni(dcpm)2](NO3)2·2EtOH, [Ni2Cl2(μ-dcpm)2(μ-H)] and [Ni2(μ-PCy2)2(PCy2Me)2]; dcpm=bis(dicyclohexylphosphino)methane , 2000 .

[32]  H. Senn,et al.  Toward an alkene hydroamination catalyst: static and dynamic ab initio DFT studies , 2000 .

[33]  M. Brookhart,et al.  Late-metal catalysts for ethylene homo- and copolymerization. , 2000, Chemical reviews.

[34]  E. Oñate,et al.  Synthesis of branched polyethylene using (α-diimine)nickel(II) catalysts : influence of temperature, ethylene pressure, and ligand structure on polymer properties , 2000 .

[35]  M. Brookhart,et al.  Low-Temperature Spectroscopic Observation of Chain Growth and Migratory Insertion Barriers in (α-Diimine)Ni(II) Olefin Polymerization Catalysts , 1999 .

[36]  G. Britovsek,et al.  The Search for New-Generation Olefin Polymerization Catalysts: Life beyond Metallocenes. , 1999, Angewandte Chemie.

[37]  K. Gardner,et al.  Addition Polymerization of Cyclopentene with Nickel and Palladium Catalysts , 1998 .

[38]  D. J. Tempel,et al.  The Dynamics of the β-Agostic Isopropyl Complex (ArNC(R)−C(R)NAr)Pd(CH(CH2-μ-H)(CH3))+BAr4‘- (Ar = 2,6-C6H3(i-Pr)2): Evidence for In-Place Rotation versus Dissociation of the Agostic Methyl Group , 1998 .

[39]  S. Mecking,et al.  Mechanistic Studies of the Palladium-Catalyzed Copolymerization of Ethylene and α-Olefins with Methyl Acrylate , 1998 .

[40]  Andrew J. P. White,et al.  Novel olefin polymerization catalysts based on iron and cobalt , 1998 .

[41]  L. Cavallo,et al.  The Role of Bulky Substituents in Brookhart-Type Ni(II) Diimine Catalyzed Olefin Polymerization: A Combined Density Functional Theory and Molecular Mechanics Study , 1997 .

[42]  T. Ziegler,et al.  A Density Functional Study of Nickel(II) Diimide Catalyzed Polymerization of Ethylene , 1997 .

[43]  K. Morokuma,et al.  A Density Functional Study of the Mechanism of the Diimine−Nickel-Catalyzed Ethylene Polymerization Reaction , 1997 .

[44]  D. J. Tempel,et al.  Living Polymerization of α-Olefins Using NiII−α-Diimine Catalysts. Synthesis of New Block Polymers Based on α-Olefins , 1996 .

[45]  S. Mecking,et al.  Copolymerization of Ethylene and Propylene with Functionalized Vinyl Monomers by Palladium(II) Catalysts , 1996 .

[46]  P. Hofmann,et al.  Crystal structure of dicarbonyl[η2-bis(di-tert-butylphosphino)-methane]nickel(0), ((C4H9)2P)2CH2Ni(CO)2 , 1996 .

[47]  P. Hofmann,et al.  Crystal structure of [η2-bis(trimethylsilyl)acetylene][η2-bis(di-tert-butylphosphino)methane]nickel(0), ((CH3)3Si)2C2((C4H9)2P)2CH2Ni , 1996 .

[48]  P. Hofmann,et al.  Crystal structure of cis-chloromethyl[η2-bis(di-tert-butylphosphino)-methane]nickel(II), ((C4H9)2P)2CH2NiCH3Cl , 1996 .

[49]  Maurice Brookhart,et al.  New Pd(II)- and Ni(II)-Based Catalysts for Polymerization of Ethylene and .alpha.-Olefins , 1995 .

[50]  P. Hofmann,et al.  Bis(di-t-butylphosphino)methane complexes of rhodium: homogeneous alkyne hydrosilylation by catalyst-dependent alkyne insertion into RhSi or RhH bonds. Molecular structures of the dimer [(dtbpm)RhCl]2 and of the silyl complex (dtbpm) Rh[Si(OEt)3](PMe3)☆ , 1995 .

[51]  M. Brookhart,et al.  [(3,5-(CF3)2C6H3)4B]-[H(OEt2)2]+: a convenient reagent for generation and stabilization of cationic, highly electrophilic organometallic complexes , 1992 .

[52]  P. Hofmann,et al.  .eta.2-(C,O) Ketene coordination at nickel(O). Synthesis, bonding, and molecular structure of (dtbpm)Ni[.eta.2-(C,O)-Ph2C2O] [dtbpm = bis(di-tert-butylphosphino)methane] , 1992 .

[53]  P. Hofmann,et al.  Room-temperature C-F bond activation of hexafluorobenzene by a tailor-made Pt(0) intermediate, [(dtbpm)Pt(0)] , 1992 .

[54]  P. Hofmann,et al.  Bis(di‐tert‐butylphosphanyl)methan‐Komplexe des Rhodiums: Geometrie, Elektronenstruktur und Derivate des 14‐Elektronenteilchens [Rh(dtbpm)Cl]. Molekülstruktur von Rh(dtbpm)Cl(PMe3) , 1992 .

[55]  M. Doyle,et al.  Efficient palladium catalysts for the copolymerization of carbon monoxide with olefins to produce perfectly alternating polyketones , 1991 .

[56]  P. Hofmann,et al.  Novel Platinum Complexes Enable Selective C‐H and C‐Si Activation of Tetramethylsilane at Room Temperature , 1990 .

[57]  P. Hofmann,et al.  Neuartige Platinkomplexe ermöglichen selektive C‐H‐ und C‐Si‐Aktivierung von Tetramethylsilan bei Raumtemperatur , 1990 .

[58]  W. Keim,et al.  Novel Coordination of (Benzoylmethylene)triphenylphosphorane in a Nickel Oligomerization Catalyst , 1978 .

[59]  W. Koenig Koenig Potash Bulb , 1911 .