Approximating connectivity augmentation problems

Let <i>G</i> = (<i>V, E</i>) be a graph and let <i>S</i> ⊆ <i>V.</i> The <i>S-connectivity</i> λ<i>s</i>(<i>u, v; G</i>) of <i>u</i> and <i>v</i> in <i>G</i> is the maximum number of <i>uv</i>-paths that no two of them have an edge or a node in <i>S</i> - {<i>u, v</i>} in common. The corresponding <i>Connectivity Augmentation Problem (CAP)</i> is: given a graph <i>G</i> = (<i>V, E</i>), a node subset <i>S</i> ⊆ <i>V</i>, and a nonnegative integer requirement function <i>r</i>(<i>u, v</i>) on the set of pairs of nodes, add a minimum size set <i>F</i> of new edges to <i>G</i> so that λ<i>s</i>(<i>u, v; G</i> + <i>F</i>) ≥ <i>r</i>(<i>u, v</i>) holds for all <i>u, v</i> ∈ <i>V</i>. Three extensively studied particular cases are: the <i>edge-</i> (<i>S</i> = θ), the <i>node-</i> (<i>S = V</i>), and the <i>element-</i> (<i>r</i>(<i>u, v</i>) = 0 whenever <i>u</i> ∈ <i>S</i> or <i>v</i> ∈ <i>S</i>) CAP. A polynomial algorithm for edge- CAP was developed by A. Frank [8]. In this paper we consider the element-CAP and the node-CAP, that are NP- hard even for <i>r</i>(<i>u, v</i>) ∈ {0, 2}. Our main result is a 7/4- approximation algorithm for the element-CAP, improving the previously best known 2-approximation. For the {0, <i>k</i>}- element-CAP (with <i>r</i>(<i>u, v</i>) ∈ {0, <i>k</i>}) and for the {0, 1, 2}-element-CAP we give a 3/2-approximation algorithm. The approximation ratios are based on a new lower bound on the number of edges needed to cover a skew-supermodular set function. For the node-CAP we establish the following approximation threshold: the {0, <i>k</i>}-node-CAP cannot be approximated within <i>O</i>(2<sup>log-1-∈<i>n</i></sup>) for any fixed ∈ > 0, unless NP ⊆ DTIME(<i>n</i><sup>Polylog(<i>n</i>)</sup>); thus the node-CAP is unlikely to have a polylogarithmic approximation.

[1]  Robert E. Tarjan,et al.  Augmentation Problems , 1976, SIAM J. Comput..

[2]  Bill Jackson,et al.  Independence free graphs and vertex connectivity augmentation , 2001, J. Comb. Theory, Ser. B.

[3]  David Peleg Approximation algorithms for the Label-CoverMAX and Red-Blue Set Cover problems , 2007, J. Discrete Algorithms.

[4]  Zeev Nutov Approximating Rooted Connectivity Augmentation Problems , 2005, Algorithmica.

[5]  Guy Kortsarz,et al.  Approximating Minimum-Cost Connectivity Problems , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[6]  Viggo Kann,et al.  Maximum Bounded 3-Dimensional Matching is MAX SNP-Complete , 1991, Inf. Process. Lett..

[7]  Kamal Jain,et al.  A Factor 2 Approximation Algorithm for the Generalized Steiner Network Problem , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[8]  David P. Williamson,et al.  Iterative rounding 2-approximation algorithms for minimum-cost vertex connectivity problems , 2006, J. Comput. Syst. Sci..

[9]  Zoltán Király,et al.  Local Connectivity Augmentation in Hypergraphs is NP-complete , 2005 .

[10]  Zeev Nutov Approximating Rooted Connectivity Augmentation Problems , 2003, RANDOM-APPROX.

[11]  Bill Jackson,et al.  Independence free graphs and vertex connectivity augmentation , 2005, J. Comb. Theory, Ser. B.

[12]  Santosh S. Vempala,et al.  Network Design via Iterative Rounding of Setpair Relaxations , 2022 .

[13]  András Frank Augmenting Graphs to Meet Edge-Connectivity Requirements , 1992, SIAM J. Discret. Math..

[14]  A. Bencz,et al.  Covering Symmetric Supermodular Functions by Graphs + , 1998 .

[15]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[16]  Hiroshi Nagamochi Recent development of graph connectivity augmentation algorithms , 2000 .

[17]  Robert Krauthgamer,et al.  Hardness of Approximation for Vertex-Connectivity Network Design Problems , 2004, SIAM J. Comput..

[18]  Akira Nakamura,et al.  Edge-Connectivity Augmentation Problems , 1987, J. Comput. Syst. Sci..

[19]  András Frank,et al.  On a theorem of Mader , 1992, Discret. Math..

[20]  Guo-Ray Cai,et al.  The minimum augmentation of any graph to a K-edge-connected graph , 1989, Networks.

[21]  Bill Jackson,et al.  A Near Optimal Algorithm for Vertex Connectivity Augmentation , 2000, ISAAC.

[22]  András Frank,et al.  Edge-Connection of Graphs, Digraphs, and Hypergraphs , 2006 .

[23]  András Frank,et al.  Minimal Edge-Coverings of Pairs of Sets , 1995, J. Comb. Theory B.

[24]  Ján Pleseník,et al.  Minimum block containing a given graph , 1976 .

[25]  S. Khuller Approximation algorithms for finding highly connected subgraphs , 1996 .

[26]  A. Frank,et al.  An application of submodular flows , 1989 .

[27]  Bill Jackson,et al.  Connectivity Augmentation of Graphs , 2000, Electron. Notes Discret. Math..

[28]  David P. Williamson,et al.  An iterative rounding 2-approximation algorithm for the element connectivity problem , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[29]  Andrr As Frank,et al.  Applications of Relaxed Submodularity , 1998 .

[30]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[31]  Jørgen Bang-Jensen,et al.  Augmenting hypergraphs by edges of size two , 1999, Math. Program..

[32]  W. Mader A Reduction Method for Edge-Connectivity in Graphs , 1978 .

[33]  Ran Raz,et al.  A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.

[34]  G. Kortsarz,et al.  Approximating minimum cost connectivity problems , 2007 .

[35]  Tsan-sheng Hsu Undirected Vertex-Connectivity Structure and Smallest Four-Vertex-Connectivity Augmentation , 1995, ISAAC.

[36]  Zoltán Szigeti Hypergraph connectivity augmentation , 1999, Math. Program..

[37]  András Frank,et al.  Connectivity and network flows , 1996 .

[38]  Hiroshi Nagamochi,et al.  On the minimum local-vertex-connectivity augmentation in graphs , 2003, Discret. Appl. Math..

[39]  Zeev Nutov,et al.  A 2-level cactus model for the system of minimum and minimum+1 edge-cuts in a graph and its incremental maintenance , 1995, STOC '95.

[40]  Ran Raz A Parallel Repetition Theorem , 1998, SIAM J. Comput..

[41]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .