Correlation-induced magnetism in substrate-supported 2D metal-organic frameworks

[1]  M. Bianchi,et al.  Proximity Effects on the Charge Density Wave Order and Superconductivity in Single-Layer NbSe2 , 2021, ACS nano.

[2]  A. Foster,et al.  Two-Dimensional Metal–Organic Framework on Superconducting NbSe2 , 2021, ACS nano.

[3]  A. Schiffrin,et al.  Manifestation of Strongly Correlated Electrons in a 2D Kagome Metal–Organic Framework , 2021, Advanced Functional Materials.

[4]  Wei Zhao,et al.  Highly Degenerate Ground States in a Frustrated Antiferromagnetic Kagome Lattice in a Two-Dimensional Metal-Organic Framework. , 2021, The journal of physical chemistry letters.

[5]  A. Foster,et al.  Synthesis and Local Probe Gating of a Monolayer Metal‐Organic Framework , 2021, Advanced Functional Materials.

[6]  C. A. Downing,et al.  Searching for kagome multi-bands and edge states in a predicted organic topological insulator. , 2021, Nanoscale.

[7]  Yifan Gao,et al.  Design and Synthesis of a Single-Layer Ferromagnetic Metal–Organic Framework with Topological Nontrivial Gaps , 2020 .

[8]  S. Tsirkin,et al.  Many-Body Resonance in a Correlated Topological Kagome Antiferromagnet. , 2020, Physical review letters.

[9]  Peitao Liu,et al.  Kagome metal-organic frameworks as a platform for strongly correlated electrons , 2020, Journal of Physics: Materials.

[10]  SungBin Lee,et al.  Emergent chiral spin ordering and anomalous Hall effect in a kagome lattice at a 13 filling , 2019, 1912.12621.

[11]  H. Aoki Theoretical Possibilities for Flat Band Superconductivity , 2019, 1912.04469.

[12]  Choong H. Kim,et al.  Chern insulator with a nearly flat band in the metal-organic-framework-based Kagome lattice , 2019, Scientific Reports.

[13]  Ian Young,et al.  Electric-field control of magnetism , 2019, Proceedings of the Royal Society A.

[14]  Qiang Zhao,et al.  Ultrathin two-dimensional metal-organic framework nanosheets for functional electronic devices , 2018, Coordination Chemistry Reviews.

[15]  M. Alouani,et al.  Two-Dimensional Organometallic Kondo Lattice with Long-Range Antiferromagnetic Order , 2018, The Journal of Physical Chemistry C.

[16]  H. Petek,et al.  Deconstruction of the Electronic Properties of a Topological Insulator with a Two-Dimensional Noble Metal–Organic Honeycomb–Kagome Band Structure , 2018, The Journal of Physical Chemistry C.

[17]  B. Shao,et al.  Pseudodoping of a metallic two-dimensional material by the supporting substrate , 2018, Nature Communications.

[18]  A. T. S. Wee,et al.  Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. , 2018, ACS nano.

[19]  G. Ferreira,et al.  Quantum anomalous Hall effect in metal-bis(dithiolene), magnetic properties, doping and interfacing graphene. , 2018, Physical chemistry chemical physics : PCCP.

[20]  M. L. Van de Put,et al.  Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk , 2018, npj 2D Materials and Applications.

[21]  T. Taniguchi,et al.  Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling , 2018, Science.

[22]  F. Liu,et al.  Prediction of large gap flat Chern band in a two-dimensional metal-organic framework , 2018 .

[23]  B. Hammer,et al.  Substrate-induced semiconductor-to-metal transition in monolayer WS 2 , 2017, 1708.02799.

[24]  Feng Liu,et al.  Computational design of two‐dimensional topological materials , 2017 .

[25]  T. Jung,et al.  Long-range ferrimagnetic order in a two-dimensional supramolecular Kondo lattice , 2017, Nature Communications.

[26]  Xingwang Zhang,et al.  Recent progress in synthesis of two-dimensional hexagonal boron nitride , 2017 .

[27]  S. Yamada,et al.  Superconductivity in repulsively interacting fermions on a diamond chain: Flat-band-induced pairing , 2016, 1608.00125.

[28]  Thomas A. Manz,et al.  Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology , 2016 .

[29]  T. Manz,et al.  Introducing DDEC6 atomic population analysis: part 2. Computed results for a wide range of periodic and nonperiodic materials , 2016 .

[30]  Hiroaki Maeda,et al.  Coordination Programming of Two-Dimensional Metal Complex Frameworks. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[31]  Feng Liu,et al.  Intrinsic Two-Dimensional Organic Topological Insulators in Metal-Dicyanoanthracene Lattices. , 2016, Nano letters.

[32]  Xinliang Feng,et al.  Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. , 2015, Angewandte Chemie.

[33]  H. Aoki,et al.  First-principles design of a half-filled flat band of the kagome lattice in two-dimensional metal-organic frameworks , 2015, 1510.00164.

[34]  P. Coleman Heavy Fermions and the Kondo Lattice: a 21st Century Perspective , 2015, 1509.05769.

[35]  Ji Feng,et al.  Competing magnetic orderings and tunable topological states in two-dimensional hexagonal organometallic lattices , 2015, 1509.03921.

[36]  F. Guinea,et al.  Strain engineering in semiconducting two-dimensional crystals , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  E. Cockayne,et al.  Density functional theory meta-GGA + U study of water incorporation in the metal-organic framework material Cu-BTC. , 2015, The Journal of chemical physics.

[38]  Qian Liu,et al.  A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet , 2015, Nature Communications.

[39]  Dennis Sheberla,et al.  Cu₃(hexaiminotriphenylene)₂: an electrically conductive 2D metal-organic framework for chemiresistive sensing. , 2015, Angewandte Chemie.

[40]  Hideo Ohno,et al.  Control of magnetism by electric fields. , 2015, Nature nanotechnology.

[41]  Feng Liu,et al.  Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator. , 2014, Journal of the American Chemical Society.

[42]  E. Meyer,et al.  Probing the spatial and momentum distribution of confined surface states in a metal coordination network. , 2014, Chemical communications.

[43]  Alán Aspuru-Guzik,et al.  High electrical conductivity in Ni₃(2,3,6,7,10,11-hexaiminotriphenylene)₂, a semiconducting metal-organic graphene analogue. , 2014, Journal of the American Chemical Society.

[44]  Jia Zhou Stacking interactions of nickel bis(dithiolene) with graphene and beyond , 2014 .

[45]  Frank Lechermann,et al.  Theoretical prediction of a strongly correlated Dirac metal , 2014, Nature Communications.

[46]  A. Ralko,et al.  Phase diagram of the 1/3-filled extended Hubbard model on the Kagome lattice , 2014, 1402.4931.

[47]  P. Jain,et al.  Dimethylammonium copper formate [(CH 3 ) 2 NH 2 ]Cu(HCOO) 3 : A metal-organic framework with quasi-one-dimensional antiferromagnetism and magnetostriction , 2013 .

[48]  Se Hyun Kim,et al.  Electrolyte‐Gated Transistors for Organic and Printed Electronics , 2013, Advanced materials.

[49]  M. Katsnelson,et al.  Optimal Hubbard models for materials with nonlocal Coulomb interactions: graphene, silicene, and benzene. , 2013, Physical review letters.

[50]  Mariko Miyachi,et al.  π-Conjugated nickel bis(dithiolene) complex nanosheet. , 2013, Journal of the American Chemical Society.

[51]  Marcella Iannuzzi,et al.  Boron nitride on Cu(111): an electronically corrugated monolayer. , 2012, Nano letters.

[52]  Feng Liu,et al.  Flat Chern band in a two-dimensional organometallic framework. , 2012, Physical review letters.

[53]  R. Thomale,et al.  Sublattice interference in the kagome Hubbard model , 2012, 1206.6539.

[54]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[55]  D. Sholl,et al.  Methods for Computing Accurate Atomic Spin Moments for Collinear and Noncollinear Magnetism in Periodic and Nonperiodic Materials. , 2011, Journal of chemical theory and computation.

[56]  P. Gambardella,et al.  Spin coupling and relaxation inside molecule-metal contacts. , 2011, Nature communications.

[57]  N. Takagi,et al.  Evolution of Kondo resonance from a single impurity molecule to the two-dimensional lattice. , 2011, Physical review letters.

[58]  Hosho Katsura,et al.  Nearly flatbands with nontrivial topology. , 2010, Physical review letters.

[59]  Xiao-Gang Wen,et al.  High-temperature fractional quantum Hall states. , 2010, Physical review letters.

[60]  S. Ulloa,et al.  Spatially extended Kondo state in magnetic molecules induced by interfacial charge transfer. , 2010, Physical review letters.

[61]  A. Ruegg,et al.  Interaction-driven topological insulators on the kagome and the decorated honeycomb lattices , 2010, 1005.4061.

[62]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[63]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[64]  Zhigang Wang,et al.  Quantum spin Hall effect and spin-charge separation in a kagomé lattice , 2009, 0909.2465.

[65]  V. Shenoy,et al.  Substrate-induced magnetism in epitaxial graphene buffer layers , 2009, Nanotechnology.

[66]  Guillaume Vives,et al.  Synthesis of single-molecule nanocars. , 2009, Accounts of chemical research.

[67]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[68]  Talat S. Rahman,et al.  A surface coordination network based on substrate-derived metal adatoms with local charge excess. , 2008, Angewandte Chemie.

[69]  J. Barth,et al.  Modular assembly of low-dimensional coordination architectures on metal surfaces , 2008 .

[70]  J. Barth,et al.  Molecular architectonic on metal surfaces. , 2007, Annual review of physical chemistry.

[71]  Antoine Georges,et al.  Strongly Correlated Electron Materials: Dynamical Mean-Field Theory and Electronic Structure , 2004, cond-mat/0403123.

[72]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[73]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[74]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[75]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[76]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[77]  Stuart Brown,et al.  Charge and Spin Density Waves , 1994 .

[78]  V. L. Sedov,et al.  Localized magnetic states in metals , 1982 .

[79]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[80]  J. H. Van Vleck,et al.  Note on the Interactions between the Spins of Magnetic Ions or Nuclei in Metals , 1962 .

[81]  N. Gall’,et al.  Graphene and graphite work function depending on layer number on Re , 2020, Diamond and Related Materials.

[82]  E. Koch,et al.  Emergent Phenomena in Correlated Matter , 2013 .

[83]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[84]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .