Open Loop Force Control of Piezo-Actuated Stick-Slip Drives

In this paper a new method to generate forces with stick-slip micro drives is described. The forces are generated if the runner of the stick-slip drive operates against an obstacle. It is shown that the generated force can be varied selectively without additional sensors and that virtually any force between zero and a limiting force given by certain parameters can be generated. For the investigated micro actuator this force is typically in the range up to hundreds of mN. For this reason, the method has the potential to expand the application fields of stick-slip positioners. After the presentation of the testbed containing the measured linear axis, measurements showing the principle and important parameters are discussed. Furthermore, it is shown that the force generation can be qualitatively simulated using state-of-the-art friction models. Finally, the results are discussed and an outlook is given.

[1]  Sergej Fatikow,et al.  Nanorobotic manipulation setup for pick-and-place handling and nondestructive characterization of carbon nanotubes , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Yongjie Zhao Computation of the Output Torque, Power and Work of the Driving Motor for a Redundant Parallel Manipulator , 2011, Int. J. Intell. Mechatronics Robotics.

[3]  A. Bergander,et al.  Monolithic piezoelectric push-pull actuators for inertial drives , 2003, MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717).

[4]  Hannes Bleuler,et al.  Position feedback for microrobots based on scanning probe microscopy , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[5]  Matthias Scheutz,et al.  Affective Goal and Task Selection for Social Robots , 2009 .

[6]  Dan O. Popa,et al.  A four degree of freedom microrobot with large work volume , 2009, 2009 IEEE International Conference on Robotics and Automation.

[7]  Wolfgang Zesch,et al.  Inertial drives for micro- and nanorobots: two novel mechanisms , 1995, Other Conferences.

[8]  Volker Klocke,et al.  DESIGN NOTE: In situ nanomanipulation system for electrical measurements in SEM , 2007 .

[9]  S Fatikow,et al.  Transporting cells with mobile microrobots. , 2004, IEE proceedings. Nanobiotechnology.

[10]  Jordi Vallverdú,et al.  Handbook of Research on Synthetic Emotions and Sociable Robotics: New Applications in Affective Computing and Artificial Intelligence , 2009 .

[11]  Shahin Sirouspour Advanced Engineering and Computational Methodologies for Intelligent Mechatronics and Robotics , 2013 .

[12]  Alfredo Garro,et al.  Computing Nash Equilibria in Non-Cooperative Games: An Agent-Based approach , 2013, Int. J. Intell. Mechatronics Robotics.

[13]  S. Kleindiek,et al.  Performing probe experiments in the SEM. , 2004, Micron.

[14]  Xingguo Xiong,et al.  Prototyping of Lunabotic Excavator Robotic System , 2012 .

[15]  C. Clevy,et al.  A micro-assembly station used for 3D reconfigurable hybrid MOEMS assembly , 2009, 2009 IEEE International Symposium on Assembly and Manufacturing.

[16]  Sergej Fatikow,et al.  NanoLab: A nanorobotic system for automated pick-and-place handling and characterization of CNTs , 2009, 2009 IEEE International Conference on Robotics and Automation.

[17]  H.N. Koivo,et al.  Simultaneous Actuation and Force Estimation Using Piezoelectric Actuators , 2007, 2007 International Conference on Mechatronics and Automation.

[18]  Urban Simu,et al.  MICRON: Small Autonomous Robot for Cell Manipulation Applications , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[19]  Jordi Vallverdú Creating Synthetic Emotions through Technological and Robotic Advancements , 2012 .

[20]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[21]  D. Pohl Dynamic piezoelectric translation devices , 1987 .

[22]  Sergej Fatikow,et al.  Development of automated microrobot-based nanohandling stations for nanocharacterization , 2008 .

[23]  A. Bergander,et al.  Development of Miniature Manipulators for Applications in Biology and Nanotechnologies , 2003 .

[24]  Vincent Hayward,et al.  Single state elastoplastic friction models , 2002, IEEE Trans. Autom. Control..

[25]  W. Driesen,et al.  Applications of Piezo-Actuated Micro-Robots in Micro-Biology and Material Science , 2007, 2007 International Conference on Mechatronics and Automation.

[26]  G. Mariotto,et al.  DYNAMIC BEHAVIOR OF A PIEZOWALKER, INERTIAL AND FRICTIONAL CONFIGURATIONS , 1999 .

[27]  Walter Driesen,et al.  Concept, modeling and experimental characterization of the modulated friction inertial drive (MFID) locomotion principle , 2008 .

[28]  Sergej Fatikow,et al.  Simulation and Measurements of Stick-Slip-Microdrives for Nanorobots , 2010 .

[29]  Ryuta Sato Mathematical Model of a CNC Rotary Table Driven by a Worm Gear , 2012, Int. J. Intell. Mechatronics Robotics.

[30]  Christoph Edeler Simulation and experimental evaluation of laser-structured actuators for a mobile microrobot , 2008, 2008 IEEE International Conference on Robotics and Automation.

[31]  F. Kaegi,et al.  A nanomanipulation platform for semi automated manipulation of nano-sized objects using mobile microrobots inside a Scanning Electron Microscope , 2008 .

[32]  K. Karrai,et al.  Low-temperature scanning probe microscopy of surface and subsurface charges , 2001 .

[33]  Khaled Karrai,et al.  Slip-stick step-scanner for scanning probe microscopy , 2005 .

[34]  Sylvain Martel,et al.  Three-legged wireless miniature robots for mass-scale operations at the sub-atomic scale , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[35]  Valentin L. Popov,et al.  Kontaktmechanik und Reibung , 2010 .

[36]  J. Liu,et al.  Stiffness Modeling and Analysis of Passive Four-Bar Parallelogram in Fully Compliant Parallel Positioning Stage , 2011, Int. J. Intell. Mechatronics Robotics.

[37]  Dan O. Popa,et al.  ARRIpede: A stick-slip micro crawler/conveyor robot constructed via 2 ½D MEMS assembly , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[38]  Ping Zhang,et al.  μ3: Multiscale, Deterministic Micro-Nano Assembly System for Construction of On-Wafer Microrobots , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.