Molecular optical filtering in perovskite solar cells

[1]  P. Yunin,et al.  Small-molecule heterojunctions: stability to ageing under sunlight , 2021, Applied Surface Science.

[2]  Zongxiang Xu,et al.  Reformation of thiophene-functionalized phthalocyanine isomers for defect passivation to achieve stable and efficient perovskite solar cells , 2021, Journal of Energy Chemistry.

[3]  N. Park,et al.  Materials and Methods for High‐Efficiency Perovskite Solar Modules , 2021, Solar RRL.

[4]  Xiaodang Zhang,et al.  Stability of Perovskite Solar Cells: Degradation Mechanisms and Remedies , 2021, Frontiers in Electronics.

[5]  Myung‐Gil Kim,et al.  Engineering Copper Iodide (CuI) for Multifunctional p‐Type Transparent Semiconductors and Conductors , 2021, Advanced science.

[6]  Tae-Youl Yang,et al.  Metal-Free Phthalocyanine as a Hole Transporting Material and a Surface Passivator for Efficient and Stable Perovskite Solar Cells. , 2021, Small methods.

[7]  B. Richards,et al.  Photodegradation of Triple-Cation Perovskite Solar Cells: The Role of Spectrum and Bias Conditions , 2021 .

[8]  Fatma Pınar Gökdemir Choi Fast and feasible fabrication of zinc- and lithium-doped cobalt oxide layers as an emerging hole injection candidate for perovskite solar cells , 2021, Journal of Materials Science: Materials in Electronics.

[9]  Zongxiang Xu,et al.  Dual Defect-Passivation Using Phthalocyanine for Enhanced Efficiency and Stability of Perovskite Solar Cells. , 2020, Small.

[10]  M. Green,et al.  Solar cell efficiency tables (version 57) , 2020, Progress in Photovoltaics: Research and Applications.

[11]  S. Seto Inverted planer perovskite solar cells fabricated by all vapor phase process , 2020, Japanese Journal of Applied Physics.

[12]  Y. Xiang,et al.  Lewis acid/base approach for efficacious defect passivation in perovskite solar cells , 2020 .

[13]  Danqin Li,et al.  Exploring Red, Green, and Blue Light‐Activated Degradation of Perovskite Films and Solar Cells for Near Space Applications , 2019, Solar RRL.

[14]  T. Kirchartz Photon Management in Perovskite Solar Cells. , 2019, The journal of physical chemistry letters.

[15]  P. Yunin,et al.  Direct Imaging of Current‐Induced Transformation of a Perovskite/Electrode Interface , 2019, Advanced Materials Interfaces.

[16]  Rui Wang,et al.  A Review of Perovskites Solar Cell Stability , 2019, Advanced Functional Materials.

[17]  A. H. Aimon,et al.  Morphology Control of MAPbI3 Perovskite Thin Film as An Active Layer of Solar Cells , 2018, IOP Conference Series: Materials Science and Engineering.

[18]  A. Zakhidov,et al.  Photoinduced Migration of Ions in Optically Resonant Perovskite Nanoparticles , 2018, JETP Letters.

[19]  Y. Qi,et al.  Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability , 2018 .

[20]  Jingfa Li,et al.  Interactions between molecules and perovskites in halide perovskite solar cells , 2018 .

[21]  A. A. Baloch,et al.  Practical Efficiency Limit of Methylammonium Lead Iodide Perovskite (CH3NH3PbI3) Solar Cells. , 2018, The journal of physical chemistry letters.

[22]  Tongle Bu,et al.  A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells , 2017 .

[23]  Young Chan Kim,et al.  Engineering interface structures between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells , 2017 .

[24]  Laura M. Herz,et al.  Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites , 2017, Nature Energy.

[25]  Yani Chen,et al.  Triple-cation mixed-halide perovskites: towards efficient, annealing-free and air-stable solar cells enabled by Pb(SCN)2 additive , 2017, Scientific Reports.

[26]  Jinsong Huang,et al.  The Functions of Fullerenes in Hybrid Perovskite Solar Cells , 2017 .

[27]  Brian C. Berry,et al.  Hybrid Perovskite Photovoltaic Devices: Properties, Architecture, and Fabrication Methods , 2017 .

[28]  Konrad Wojciechowski,et al.  Efficient and Air‐Stable Mixed‐Cation Lead Mixed‐Halide Perovskite Solar Cells with n‐Doped Organic Electron Extraction Layers , 2017, Advanced materials.

[29]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[30]  L. Froyen,et al.  Correlating the Polymorphism of Titanyl Phthalocyanine Thin Films with Solar Cell Performance. , 2012, The journal of physical chemistry letters.

[31]  B. Ginzburg,et al.  X-ray diffraction analysis of C60 fullerene powder and fullerene soot , 2005 .

[32]  Travkin V. V.,et al.  Experimental study of heat transfer in thin-film perovskite-based structures using a low-coherent tandem interferometry , 2022, Technical Physics Letters.

[33]  P. Yunin,et al.  Wavelength-selective degradation of perovskite-based solar cells , 2020 .

[34]  V. Travkin,et al.  NIR Photoresponse of Perovskite Solar Cells with Titanyl Phthalocyanine , 2019, Macroheterocycles.

[35]  V. Travkin,et al.  Thiadiazole Fused Subporphyrazines as Acceptors in Organic Photovoltaic Cells , 2017 .

[36]  G. Pakhomov,et al.  Heterocyclic Subphthalocyanine Analogue – Boron(III) Subporphyrazine with Fused 1,2,5-Thiadiazole Rings , 2016 .

[37]  V. P. N. Nampooria,et al.  Optical properties of phthalocyanine molecules In cyano acrylate polymer matrix , 2011 .