List injective colorings of planar graphs

A vertex coloring of a graph G is called injective if any two vertices joined by a path of length two get different colors. A graph G is injectively k-choosable if any list L of admissible colors on V(G) of size k allows an injective coloring @f such that @f(v)@?L(v) whenever [email protected]?V(G). The least k for which G is injectively k-choosable is denoted by @g"i^l(G). Note that @g"i^l>[email protected] for every graph with maximum degree @D. For planar graphs with girth g, Bu et al. (2009) [15] proved that @g"i^[email protected] if @D>=71 and g>=7, which we strengthen here to @D>=16. On the other hand, there exist planar graphs with g=6 and @g"i^[email protected]+1 for any @D>=2. Cranston et al. (submitted for publication) [16] proved that @g"i^[email protected][email protected]+1 if g>=9 and @D>=4. We prove that each planar graph with g>=6 and @D>=24 has @g"i^[email protected][email protected]+1.

[1]  Oleg V. Borodin,et al.  2-distance (Delta+2)-coloring of planar graphs with girth six and Delta>=18 , 2009, Discret. Math..

[2]  Anna O. Ivanova,et al.  List 2-distance (Δ + 1)-coloring of planar graphs with girth at least 7 , 2011 .

[3]  Alexandr V. Kostochka,et al.  List Edge and List Total Colourings of Multigraphs , 1997, J. Comb. Theory B.

[4]  Oleg V. Borodin,et al.  On the total coloring of planar graphs. , 1989 .

[5]  G. Wegner Graphs with given diameter and a coloring problem , 1977 .

[6]  Magnús M. Halldórsson,et al.  Coloring powers of planar graphs , 2000, SODA '00.

[7]  Daniel Král,et al.  Coloring squares of planar graphs with girth six , 2008, Eur. J. Comb..

[8]  Oleg V. Borodin,et al.  Sufficient conditions for the minimum 2-distance colorability of plane graphs of girth 6. , 2006 .

[9]  Mohammad R. Salavatipour,et al.  Frequency Channel Assignment on Planar Networks , 2002, ESA.

[10]  Jan Kratochvíl,et al.  On the injective chromatic number of graphs , 2002, Discret. Math..

[11]  Mohammad R. Salavatipour,et al.  A bound on the chromatic number of the square of a planar graph , 2005, J. Comb. Theory, Ser. B.

[12]  Oleg V. Borodin,et al.  List 2-distance (Delta+2)-coloring of planar graphs with girth six , 2009, Eur. J. Comb..

[13]  André Raspaud,et al.  Injective coloring of planar graphs , 2009, Discret. Appl. Math..

[14]  Martin Tancer,et al.  Injective colorings of planar graphs with few colors , 2009, Discret. Math..

[15]  Oleg V. Borodin,et al.  List 2-distance (Δ + 1)-coloring of planar graphs with given girth , 2008 .

[16]  Oleg V. Borodin,et al.  Sufficient conditions for planar graphs to be 2-distance ()-colourable. , 2004 .

[17]  Xuding Zhu,et al.  Edge-partitions of planar graphs and their game coloring numbers , 2002 .

[18]  Oleg V. Borodin,et al.  List 2-distance (Δ + 2)-coloring of planar graphs with girth 6 and Δ ≥ 24 , 2009 .