Portfolio Choice Based on Third-Degree Stochastic Dominance

We develop an optimization method for constructing investment portfolios that dominate a given benchmark portfolio in terms of third-degree stochastic dominance. Our approach relies on the properties of the semivariance function, a refinement of an existing ‘super-convex’ dominance condition and quadratic constrained programming. We apply our method to historical stock market data using an industry momentum strategy. Our enhanced portfolio generates important performance improvements compared with alternatives based on mean-variance dominance and seconddegree stochastic dominance. Relative to the CSRP all-share index, our portfolio increases average out-of-sample return by almost seven percentage points per annum without incurring more downside risk, using quarterly rebalancing and without short selling.

[1]  David Avis,et al.  A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra , 1992, Discret. Comput. Geom..

[2]  Erick Delage,et al.  Decision Making Under Uncertainty When Preference Information Is Incomplete , 2015, Manag. Sci..

[3]  James R. Wart,et al.  Efficient Algorithms for Conducting Stochastic Dominance Tests on Large Numbers of Portfolios: Reply , 1975, Journal of Financial and Quantitative Analysis.

[4]  Hiroshi Konno,et al.  Third Degree Stochastic Dominance and Mean-Risk Analysis , 2000 .

[5]  Thierry Post,et al.  General linear formulations of stochastic dominance criteria , 2013, Eur. J. Oper. Res..

[6]  Iñaki R. Longarela A Characterization of the SSD-Efficient Frontier of Portfolio Weights by Means of a Set of Mixed-Integer Linear Constraints , 2016, Manag. Sci..

[7]  Thierry Post,et al.  Multivariate Tests for Stochastic Dominance Efficiency of a Given Portfolio , 2004, Journal of Financial and Quantitative Analysis.

[8]  Timo Kuosmanen,et al.  Efficient Diversification According to Stochastic Dominance Criteria , 2004, Manag. Sci..

[9]  Thierry Post,et al.  A general test for SSD portfolio efficiency , 2015, OR Spectr..

[10]  R. G. Vickson,et al.  Stochastic Dominance Tests for Decreasing Absolute Risk Aversion. I. Discrete Random Variables , 1975 .

[11]  V. Bawa OPTIMAL, RULES FOR ORDERING UNCERTAIN PROSPECTS+ , 1975 .

[12]  James N. Bodurtha,et al.  On Determination of Stochastic Dominance Optimal Sets , 1985 .

[13]  Moshe Leshno,et al.  Preferred by "All" and Preferred by "Most" Decision Makers: Almost Stochastic Dominance , 2002, Manag. Sci..

[14]  O. Scaillet Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall , 2004 .

[15]  Mark Grinblatt,et al.  Do Industries Explain Momentum , 1999 .

[16]  Thierry Post,et al.  A Portfolio Optimality Test Based on the First-Order Stochastic Dominance Criterion , 2008, Journal of Financial and Quantitative Analysis.

[17]  Gautam Mitra,et al.  Enhanced indexation based on second-order stochastic dominance , 2013, Eur. J. Oper. Res..

[18]  Peter C. Fishburn,et al.  Convex stochastic dominance with continuous distribution functions , 1974 .

[19]  Thierry Post,et al.  Empirical Tests for Stochastic Dominance Efficiency , 2003 .

[20]  S. Yitzhaki,et al.  Marginal conditional stochastic dominance , 1994 .

[21]  Josef Hadar,et al.  Rules for Ordering Uncertain Prospects , 1969 .

[22]  Yoon-Jae Whang,et al.  Testing for Stochastic Dominance E¢ ciency , 2005 .

[23]  Mark M. Carhart On Persistence in Mutual Fund Performance , 1997 .

[24]  Jens Carsten Jackwerth,et al.  Improved Portfolio Choice Using Second Order Stochastic Dominance , 2013 .

[25]  Thierry Post,et al.  Linear Tests for DARA Stochastic Dominance , 2013 .

[26]  H. Levy,et al.  The Efficiency Analysis of Choices Involving Risk1 , 1975 .

[27]  Donald J. Meyer,et al.  Relative Risk Aversion: What Do We Know? , 2005 .

[28]  J. Quirk,et al.  Admissibility and Measurable Utility Functions , 1962 .

[29]  Gautam Mitra,et al.  Portfolio construction based on stochastic dominance and target return distributions , 2006, Math. Program..

[30]  E. Fama,et al.  Multifactor Explanations of Asset Pricing Anomalies , 1996 .

[31]  Narasimhan Jegadeesh,et al.  Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency , 1993 .

[32]  Octave Jokung,et al.  Making Inefficient Market Indices Efficient , 2009 .

[33]  P. Fishburn Mean-Risk Analysis with Risk Associated with Below-Target Returns , 1977 .

[34]  O. Scaillet,et al.  Testing for Stochastic Dominance Efficiency , 2005 .