Evaluation of polarimetric Radarsat-2 SAR data for development of soil moisture retrieval algorithms over a chronosequence of black spruce boreal forests

Abstract C-band Radarsat-2 data were used to develop multi-parameter algorithms to retrieve soil moisture across a chronosequence (recently burned, shrubby regrowth and mature forest) of fire-disturbed Alaskan boreal black spruce forests using polarized backscatter intensity, polarimetric decomposition and discriminator parameters as independent variables. To account for complex interactions of surface roughness, biomass and soil moisture, multiple polarimetric variables were evaluated empirically in algorithm development using a time series dataset that included the wet and dry extreme conditions. Results indicate that polarimetric discriminators, such as maximum degree of polarization, fractional polarization or coefficient of variation, may be instrumental in accounting for the type of scattering occurring or the complexity or heterogeneity of the distributed target. Using the maximum degree of polarization combined with one or more variables on scattered intensity (e.g. C-HV, C-HH, or maximum scattering intensity) improved multi-linear moisture retrieval algorithms by 27–33% over the single, dual and quad polarized backscatter intensity algorithms. For all sites combined, algorithms were developed with low SE (7.0% volumetric soil moisture), moderately high R 2 (0.77) and low RMSE (6.7% volumetric soil moisture). However, the best models were produced by separating the recently burned forests (strongest algorithm: R 2 0.94, SE 5.9, RMSE 7.4) from the shrubby and mature forests (best algorithm: R 2 0.85, SE 4.7, RMSE 7.3). Results are limited to sites with biomass below 3 kg/m 2 .

[1]  T. J. Pultz,et al.  Case studies demonstrating the hydrological applications of C-band multipolarized and polarimetric SAR , 2004 .

[2]  Thuy Le Toan,et al.  Polarimetric discriminators for SAR images , 1992, IEEE Trans. Geosci. Remote. Sens..

[3]  Yong Wang,et al.  Assessing the influence of vegetation cover on soil-moisture signatures in fire-disturbed boreal forests in interior Alaska: Modelled results , 2000 .

[4]  M. D. Rutherford,et al.  Evaluation of ERS SAR data for prediction of fire danger in a Boreal region , 1999 .

[5]  Yves Bergeron,et al.  Global Change and the Boreal Forest: Thresholds, Shifting States or Gradual Change? , 2004, Ambio.

[6]  M. E. Alexander,et al.  Distribution of Forest Ecosystems and the Role of Fire in the North American Boreal Region , 2000 .

[7]  Eric S. Kasischke,et al.  Remote monitoring of spatial and temporal surface soil moisture in fire disturbed boreal forest ecosystems with ERS SAR imagery , 2007 .

[8]  François Charbonneau,et al.  Assessment of polarimetric SAR data for discrimination between wet versus dry soil moisture conditions , 2013 .

[9]  Jakob J. van Zyl,et al.  Model-Based Decomposition of Polarimetric SAR Covariance Matrices Constrained for Nonnegative Eigenvalues , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[10]  C. E. Van Wagner,et al.  Development and structure of the Canadian Forest Fire Weather Index System , 1987 .

[11]  H. Zebker,et al.  Imaging radar polarimetry from wave synthesis , 1986 .

[12]  Irena Hajnsek,et al.  Potential of Estimating Soil Moisture Under Vegetation Cover by Means of PolSAR , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Laura L. Bourgeau-Chavez,et al.  Improving the prediction of wildfire potential in boreal Alaska with satellite imaging radar , 2007, Polar Record.

[14]  Mihai A. Tanase,et al.  Soil Moisture Limitations on Monitoring Boreal Forest Regrowth Using Spaceborne L-Band SAR Data , 2011 .

[15]  C. T. Dyrness,et al.  The effects of experimental fires on black spruce forest floors in interior Alaska , 1983 .

[16]  K. Riordan,et al.  Development of calibration algorithms for selected water content reflectometry probes for burned and non-burned organic soils of Alaska , 2010 .

[17]  Stephen L. Durden,et al.  Modeling and observation of the radar polarization signature of forested areas , 1989 .

[18]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[19]  Eric S. Kasischke,et al.  Persistent Effects of Fire Severity on Early Successional Forests in Interior Alaska , 2011 .

[20]  Jiancheng Shi,et al.  Evaluate usage of decomposition technique in estimation of soil moisture with vegetated surface by multi-temporal measurements , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[21]  E. Kasischke,et al.  Fire Danger Monitoring Using ERS-1 SAR Images in the Case of Northern Boreal Forests , 2002 .

[22]  D. Evans,et al.  Radar polarimetry: analysis tools and applications , 1988 .

[23]  B. Brisco,et al.  The application of C-band polarimetric SAR for agriculture: a review , 2004 .

[24]  M. E. Alexander,et al.  Canadian Forest Fire Danger Rating System: An Overview , 1989 .

[25]  E. Kasischke,et al.  Stand-level effects of soil burn severity on postfire regeneration in a recently burned black spruce forest , 2005 .

[26]  Ridha Touzi,et al.  Wetland characterization using polarimetric RADARSAT-2 capability , 2007 .

[27]  Brigitte Leblon,et al.  Fire danger monitoring using RADARSAT‐1 over northern boreal forests , 2007 .

[28]  S. W. Taylor,et al.  Science, technology, and human factors in fire danger rating: the Canadian experience , 2006 .

[29]  Irena Hajnsek,et al.  Inversion of surface parameters from polarimetric SAR , 2003, IEEE Trans. Geosci. Remote. Sens..

[30]  Mehrez Zribi,et al.  Operational performance of current synthetic aperture radar sensors in mapping soil surface characteristics in agricultural environments: application to hydrological and erosion modelling , 2008 .

[31]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[32]  Thuy Le Toan,et al.  The effect of surface roughness on multifrequency polarimetric SAR data , 1997, IEEE Trans. Geosci. Remote. Sens..

[33]  Hiroyoshi Yamada,et al.  Four-component scattering model for polarimetric SAR image decomposition , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Warren L. Stutzman,et al.  Polarization in Electromagnetic Systems , 1992 .

[35]  Jong-Sen Lee,et al.  Polarimetric SAR speckle filtering and its implication for classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[36]  H. Zebker,et al.  Imaging radar polarization signatures: Theory and observation , 1987 .