Simulating Risk Contributions of Credit Portfolios

The 2007-2009 financial turmoil highlighted the need for more active management of credit portfolios. After measuring portfolio credit risk, an important step toward active risk management is to measure risk contributions of individual obligors to the overall risk of the portfolio. In practice, value-at-risk is often used as a risk measure for credit portfolios, and it can be decomposed into a sum of the risk contributions of individual obligors. Estimation of these risk contributions is computationally challenging, mainly because they are expectations conditioned on a rare event. In this paper, we tackle this computational problem by developing a restricted importance sampling RIS method for a class of conditional-independence credit risk models, where defaults of obligors are conditionally independent given an appropriately chosen random vector. We propose fast estimators for risk contributions and their confidence intervals. Furthermore, we study the incorporation of traditional importance sampling methods into the RIS method to further improve its efficiency for the widely used Gaussian copula model. Numerical examples show that the proposed method works well.

[1]  M. Kalkbrener AN AXIOMATIC APPROACH TO CAPITAL ALLOCATION , 2005 .

[2]  P. Glasserman Chapter 10 Calculating Portfolio Credit Risk , 2007 .

[3]  Dirk Tasche,et al.  Capital allocation for credit portfolios with kernel estimators , 2006, math/0612470.

[4]  Tito Homem-de-Mello,et al.  A Study on the Cross-Entropy Method for Rare-Event Probability Estimation , 2007, INFORMS J. Comput..

[5]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[6]  M. Joshi,et al.  Rapid and accurate development of prices and Greeks for nth to default credit swaps in the Li model , 2004 .

[7]  D. Duffie,et al.  Frailty Correlated Default , 2006 .

[8]  Xiaowei Ding,et al.  Time-Changed Birth Processes and Multi-Name Credit Derivatives , 2008, Oper. Res..

[9]  Sandro Merino,et al.  Applying importance sampling for estimating coherent credit risk contributions , 2004 .

[10]  T. Bielecki,et al.  Credit Risk Frontiers: Subprime Crisis, Pricing and Hedging, CVA, MBS, Ratings, and Liquidity , 2011 .

[11]  R. Carmona,et al.  Particle Methods For The Estimation Of Credit Portfolio Loss Distributions , 2010 .

[12]  Florian W. Kramer,et al.  Corporate Bond Defaults are Consistent with Conditional Independence , 2010 .

[13]  K. Giesecke,et al.  Exploring the Sources of Default Clustering , 2017, Journal of Financial Economics.

[14]  R. Durrett Probability: Theory and Examples , 1993 .

[15]  A. Ullah,et al.  Nonparametric Econometrics , 1999 .

[16]  Paul Glasserman,et al.  Fast Pricing of Basket Default Swaps , 2008, Oper. Res..

[17]  A. Ullah,et al.  Nonparametric Econometrics: Semiparametric and Nonparametric Estimation of Simultaneous Equation Models , 1999 .

[18]  T. Bielecki,et al.  Credit Risk Contributions , 2012 .

[19]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[20]  Alexander D. Shkolnik,et al.  Optimal Importance Sampling of Default Losses , 2014 .

[21]  Olivier Scaillet,et al.  Sensitivity Analysis of Values at Risk , 2000 .

[22]  Xianhua Peng,et al.  Default Clustering and Valuation of Collateralized Debt Obligations , 2016 .

[23]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[24]  Michael C. Fu,et al.  Conditional Monte Carlo Estimation of Quantile Sensitivities , 2009, Manag. Sci..

[25]  E. Altman,et al.  Default Recovery Rates in Credit Risk Modelling: A Review of the Literature and Empirical Evidence , 2003 .

[26]  Sreedhar T. Bharath,et al.  Does Industry-Wide Distress Affect Defaulted Firms? Evidence from Creditor Recoveries , 2007 .

[27]  David X. Li On Default Correlation , 2000 .

[28]  Sandeep Juneja,et al.  Portfolio Credit Risk with Extremal Dependence: Asymptotic Analysis and Efficient Simulation , 2008, Oper. Res..

[29]  Sachin Jain,et al.  Efficient Importance Sampling for Reduced Form Models in Credit Risk , 2006, Proceedings of the 2006 Winter Simulation Conference.

[30]  Kay Giesecke,et al.  Sequential Importance Sampling and Resampling for Dynamic Portfolio Credit Risk , 2012, Oper. Res..

[31]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[32]  Paul Glasserman,et al.  Fast Simulation of Multifactor Portfolio Credit Risk , 2008, Oper. Res..

[33]  Paul Glasserman,et al.  Measuring Marginal Risk Contributions in Credit Portfolios , 2005 .

[34]  L. Jeff Hong,et al.  Estimating Quantile Sensitivities , 2009, Oper. Res..

[35]  Kay Giesecke,et al.  Affine Point Processes and Portfolio Credit Risk , 2010, SIAM J. Financial Math..

[36]  Paul Glasserman,et al.  Importance Sampling for Portfolio Credit Risk , 2005, Manag. Sci..

[37]  J. N. Kapur,et al.  Entropy Optimization Principles and Their Applications , 1992 .

[38]  Denis Bosq,et al.  Nonparametric statistics for stochastic processes , 1996 .

[39]  D. Duffie,et al.  Common Failings: How Corporate Defaults are Correlated , 2006 .

[40]  L. Jeff Hong,et al.  Pathwise Estimation of Probability Sensitivities Through Terminating or Steady-State Simulations , 2010, Oper. Res..

[41]  Alexander J. McNeil,et al.  Dependent defaults in models of portfolio credit risk , 2003 .

[42]  B. V. Sukhatme,et al.  On the Bias and Mean Square Error of the Ratio Estimator , 1974 .

[43]  D. Lando,et al.  Correlation in Corporate Defaults: Contagion or Conditional Independence? , 2010 .

[44]  Helmut Mausser,et al.  Chapter 16 Economic Credit Capital Allocation and Risk Contributions , 2007 .

[45]  Jun Luo,et al.  Estimating Sensitivities of Portfolio Credit Risk Using Monte Carlo , 2014, INFORMS J. Comput..

[46]  M. Rogers,et al.  Scientific and technological uncertainty, the precautionary principle, scenarios and risk management , 2001 .

[47]  Darrell Duffie,et al.  Risk and Valuation of Collateralized Debt Obligations , 2001 .

[48]  M. Denault Coherent allocation of risk capital , 2001 .

[49]  B. Rost Basel Committee On Banking Supervision , 2010 .

[50]  René Carmona,et al.  Interacting particle systems for the computation of rare credit portfolio losses , 2009, Finance Stochastics.