Autonomous Ultrasound-Guided Tissue Dissection

Intraoperative ultrasound imaging can act as a valuable guide during minimally invasive tumour resection. However, contemporaneous bimanual manipulation of the transducer and cutting instrument presents significant challenges for the surgeon. Both cannot occupy the same physical location, and so a carefully coordinated relative motion is required. Using robotic partial nephrectomy as an index procedure, and employing PVA cryogel tissue phantoms in a reduced dimensionality setting, this study sets out to achieve autonomous tissue dissection with a high velocity waterjet under ultrasound guidance. The open-source da Vinci Research Kit DVRK provides the foundation for a novel multimodal visual servoing approach, based on the simultaneous processing and analysis of endoscopic and ultrasound images. Following an accurate and robust Jacobian estimation procedure, dissections are performed with specified theoretical tumour margin distances. The resulting margins, with a mean difference of 0.77mm, indicate that the overall system performs accurately, and that future generalisation to 3D tumour and organ surface morphologies is warranted.

[1]  M. S. Nathan,et al.  The Probot—an active robot for prostate resection , 1997, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[2]  Peter Kazanzides,et al.  An open-source research kit for the da Vinci® Surgical System , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[3]  T. Peters,et al.  Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging , 2004, Physics in medicine and biology.

[4]  N. Djakovic,et al.  Use of water jet resection in organ-sparing kidney surgery. , 2000, Journal of endourology.

[5]  Guang-Zhong Yang,et al.  Robust ultrasound probe tracking: initial clinical experiences during robot-assisted partial nephrectomy , 2015, International Journal of Computer Assisted Radiology and Surgery.

[6]  K. M. Deliparaschos,et al.  Evolution of autonomous and semi‐autonomous robotic surgical systems: a review of the literature , 2011, The international journal of medical robotics + computer assisted surgery : MRCAS.

[7]  Adrian Kaehler,et al.  Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library , 2016 .

[8]  Guang-Zhong Yang,et al.  Intraoperative ultrasound overlay in robot-assisted partial nephrectomy: first clinical experience. , 2014, European urology.