Trust-region method for box-constrained semismooth equations and its applications to complementary problems

In this paper, we propose a new trust-region algorithm for bound-constrained semismooth systems of equations. Trust-region subproblem is defined by minimizing a quadratic function subject only to a rectangular constraint. By employing a new active set and nonmonotone techniques, solution of the equations can be found effective. Global and local convergence results of the proposed algorithm are established under reasonable conditions. The algorithm is applied and tested on complementary problems and the experiments show that our method is efficient.

[1]  P. Toint,et al.  Global convergence of a class of trust region algorithms for optimization with simple bounds , 1988 .

[2]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[3]  Stefania Bellavia,et al.  An affine scaling trust-region approach to bound-constrained nonlinear systems , 2003 .

[4]  Olvi L. Mangasarian,et al.  Nonlinear complementarity as unconstrained and constrained minimization , 1993, Math. Program..

[5]  Francisco Facchinei,et al.  On the Accurate Identification of Active Constraints , 1998, SIAM J. Optim..

[6]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[7]  Jong-Shi Pang,et al.  NE/SQP: A robust algorithm for the nonlinear complementarity problem , 1993, Math. Program..

[8]  C. Kanzow Some equation-based methods for the nonlinear complementarity problem , 1994 .

[9]  Christian Kanzow,et al.  Strictly feasible equation-based methods for mixed complementarity problems , 2001, Numerische Mathematik.

[10]  Shengquan Wang,et al.  Nonmonotone adaptive trust region method , 2011, Eur. J. Oper. Res..

[11]  Christian Kanzow,et al.  An interior-point affine-scaling trust-region method for semismooth equations with box constraints , 2007, Comput. Optim. Appl..

[12]  Hongwei Liu,et al.  Solving equations via the trust region and its application to a class of stochastic linear complementarity problems , 2011, Comput. Math. Appl..

[13]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[14]  Christian Kanzow,et al.  A QP-free constrained Newton-type method for variational inequality problems , 1999, Math. Program..

[15]  A. Fischer A special newton-type optimization method , 1992 .

[16]  Christian Kanzow,et al.  On the resolution of monotone complementarity problems , 1996, Comput. Optim. Appl..

[17]  Qing-jun Wu,et al.  Nonmonotone trust region algorithm for unconstrained optimization problems , 2010, Appl. Math. Comput..

[18]  Liqun Qi,et al.  On the Convergence of a Trust-Region Method for Solving Constrained Nonlinear Equations with Degenerate Solutions , 2004 .

[19]  Liqun Qi,et al.  Active-Set Projected Trust-Region Algorithm for Box-Constrained Nonsmooth Equations , 2004 .

[20]  Philippe L. Toint,et al.  Towards an efficient sparsity exploiting newton method for minimization , 1981 .

[21]  Detong Zhu,et al.  Affine scaling interior Levenberg-Marquardt method for bound-constrained semismooth equations under local error bound conditions , 2008 .

[22]  Defeng Sun,et al.  A feasible semismooth asymptotically Newton method for mixed complementarity problems , 2002, Math. Program..

[23]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[24]  Francisco Facchinei,et al.  A New Merit Function For Nonlinear Complementarity Problems And A Related Algorithm , 1997, SIAM J. Optim..

[25]  L. N. Vicente,et al.  Trust-Region Interior-Point Algorithms for Minimization Problems with Simple Bounds , 1996 .

[26]  Defeng Sun,et al.  Solving KKT Systems via the Trust Region and the ConjugateGradient Methods 1 , 1999 .

[27]  A. Fischer An NCP–Function and its Use for the Solution of Complementarity Problems , 1995 .

[28]  Xiaojun Chen,et al.  A penalized Fischer-Burmeister NCP-function , 2000, Math. Program..

[29]  M. Heinkenschloss,et al.  Global Convergence of Trust-Region Interior-Point Algorithms for Infinite-Dimensional Nonconvex Mini , 1999 .

[30]  C. Kanzow,et al.  An Active Set-Type Newton Method for Constrained Nonlinear Systems , 2001 .

[31]  Stefania Petra,et al.  Projected filter trust region methods for a semismooth least squares formulation of mixed complementarity problems , 2007, Optim. Methods Softw..

[32]  Michael Ulbrich,et al.  Nonmonotone Trust-Region Methods for Bound-Constrained Semismooth Equations with Applications to Nonlinear Mixed Complementarity Problems , 2000, SIAM J. Optim..

[33]  P. Toint,et al.  Testing a class of methods for solving minimization problems with simple bounds on the variables , 1988 .

[34]  Francisco Facchinei,et al.  A semismooth equation approach to the solution of nonlinear complementarity problems , 1996, Math. Program..

[35]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .