Helium-filled drives and thermally assisted magnetic recording (TAMR) systems are the most promising next-generation magnetic recording technologies. Currently, a fused TAMR system under helium- or air-helium-filled conditions is expected. In the fused system, it is important to accurately predict thermal deformation for a full TAMR head model and change of flying height (FH) at near filed transducer (NFT). In this paper, we first constructed an iterative coupled-field analysis process and a more realistic TAMR head model, including the NFT and even the epoxy components. The heat transfer coefficient was calculated using derived gas mixture properties. And the thermal deformation and protrusion of TAMR head was investigated for various temperature and helium fraction ratios. From the simulation results, the maximum temperature at the laser diode (LD decreased up to 20% due to changes in the heat transfer coefficient and environmental temperature. The epoxy effect induced by the LD heating was around 40%, which is in no way negligible. A thermal protrusion of 1.0–1.5 nm occurred at the NFT at various conditions. After considering the thermal deformation of the epoxy and the protrusion at the NFT, we found that the total FH was reduced with increasing helium fraction ratio and temperature.
[1]
Chubing Peng,et al.
HAMR Areal Density Demonstration of 1+ Tbpsi on Spinstand
,
2013,
IEEE Transactions on Magnetics.
[2]
Tow Chong Chong,et al.
Thermal effects of heated magnetic disk on the slider in heat-assisted magnetic recording
,
2006
.
[3]
No-Cheol Park,et al.
Investigation of the Dynamic Characteristics of Light Delivery for Thermal Assisted Magnetic Recording
,
2011,
IEEE Transactions on Magnetics.
[4]
Jinglin Zheng,et al.
Thermal Flying-Height Control Sliders in Air-Helium Gas Mixtures
,
2011,
IEEE Transactions on Magnetics.
[5]
Baoxi Xu,et al.
Thermal issues and their effects on heat-assisted magnetic recording system (invited)
,
2012
.
[6]
Wei Hua,et al.
Effects of temperature dependent air properties on the performances of a thermal actuated slider
,
2009
.