Quantitative cytoarchitectonics of the posterior cingulate cortex in primates

The cytoarchitecture of four cortical areas within the posterior cingulate region and the differences among them are quantitatively analyzed in 17 primate species. The transition from allocortex (area 29) to isocortex (areas 30, 23, and 31) is characterized by shifts in laminar proportions and cellular densities. The molecular layer and inner main lamina (layers V and VI) occupy a smaller proportion of the cortex in iso‐ than in allocortex, while conversely, the outer main lamina (layers II and III) makes up a larger proportion of the cortex in iso‐ than in allocortex. Layer IV is relatively larger in area 31 than in area 23. The packing densities of cell bodies were determined by gray‐level index values. These values show that the isocortex has lower cell densities in the outer main lamina, but higher cell densities in the inner main layers. Furthermore, the granular layer of area 31 is more densely packed than it is in area 23. These results are discussed as structural correlates of a relative increase in the receptive and processing capacities of the isocortex over the adjacent allcortex.

[1]  J. Eayrs,et al.  Postnatal development of the cerebral cortex in the rat. , 1959, Journal of anatomy.

[2]  R. Passingham 8 – Specialization and the Language Areas1 , 1979 .

[3]  A. Abbie Cortical lamination in a polyprotodont marsupial, Perameles nasuta , 1942 .

[4]  A. Schleicher,et al.  Quantitative Cytoarchitectonics of the Cerebral Cortices of Several Prosimian Species , 1982 .

[5]  A. Schleicher,et al.  The monocular and binocular subfields of the rat's primary visual cortex: A quantitative morphological approach , 1984, The Journal of comparative neurology.

[6]  Ramón y Cajal,et al.  Histologie du système nerveux de l'homme & des vertébrés , 1909 .

[7]  I N FILIMONOFF,et al.  A rational subdivision of the cerebral cortex. , 1947, Archives of neurology and psychiatry.

[8]  Karl Zilles,et al.  Estimation of volume fractions in nervous tissue with an image analyzer , 1982, Journal of Neuroscience Methods.

[9]  Y. T. Loo The forebrain of the opossum, didelphis virginiana. Part II. Histology , 1931 .

[10]  F. Sanides COMPARATIVE ARCHITECTONICS OF THE NEOCORTEX OF MAMMALS AND THEIR EVOLUTIONARY INTERPRETATION * , 1969 .

[11]  A. Schleicher,et al.  Comparative aspects of the primate posterior cingulate cortex , 1986, The Journal of comparative neurology.

[12]  B. Vogt,et al.  Retrosplenial cortex in the rhesus monkey: A cytoarchitectonic and golgi study , 1976, The Journal of comparative neurology.

[13]  J. Szentágothai The modular architectonic principle of neural centers. , 1983, Reviews of physiology, biochemistry and pharmacology.

[14]  E. Armstrong Enlarged limbic structures in the human brain: the anterior thalamus and medial mamillary body , 1986, Brain Research.

[15]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[16]  W. R. Ashby A Quantitative Analysis of the Structure of the Cerebral Cortex , 1937 .

[17]  Prof. Dr. Heiko Braak,et al.  Architectonics of the Human Telencephalic Cortex , 1980, Studies of Brain Function.

[18]  J. E. Rose,et al.  Structure and relations of limbic cortex and anterior thalamic nuclei in rabbit and cat , 1948, The Journal of comparative neurology.

[19]  E. Armstrong,et al.  A quantitative comparison of the hominoid thalamus: II. Limbic nuclei anterior principalis and lateralis dorsalis. , 1980, American journal of physical anthropology.

[20]  F Mauguiere,et al.  Anatomical evidence for medial pulvinar connections with the posterior cingulate cortex, the retrosplenial area, and the posterior parahippocampal gyrus in monkeys , 1985, The Journal of comparative neurology.

[21]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[22]  A. Abbie Cortical lamination in the Monotremata , 1940 .

[23]  E. Armstrong Mosaic Evolution in the Primate Brain: Differences and Similarities in the Hominoid Thalamus , 1982 .