Broadband monopole optical nano-antennas

In this paper, a novel design of broadband monopole optical nano-antennas is proposed. It consists of a corrugated halfelliptical patch inside an elliptical aperture. Full-wave electromagnetic simulations have been used to investigate the performance of the nano-antenna. The predicted performance of the proposed monopole nano-antenna is remarkably broadband. Moreover, the proposed broadband nano-antenna can respond to light waves with different polarizations. The proposed optical antenna will pave the way towards the development of high performance optical antennas and optical systems.

[1]  P. Ginzburg,et al.  Plasmonic nanoantennas for broad-band enhancement of two-photon emission from semiconductors. , 2010, Nano letters.

[2]  N. V. Hulst,et al.  Log-periodic optical antennas with broadband directivity , 2012 .

[3]  Rüştü Umut Tok,et al.  Broadband plasmonic nanoantenna with an adjustable spectral response. , 2011, Optics express.

[4]  K. Şendur,et al.  Engineering the broadband spectrum of close-packed plasmonic honeycomb array surfaces , 2013 .

[5]  Annemarie Pucci,et al.  Resonances of individual metal nanowires in the infrared , 2006 .

[6]  Mohsen Rahmani,et al.  Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light. , 2012, Nano letters.

[7]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .

[8]  Gordon S. Kino,et al.  Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .

[9]  Xiangang Luo,et al.  Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. , 2010, Nature communications.

[10]  Daniel E. Prober,et al.  Optical antenna: Towards a unity efficiency near-field optical probe , 1997 .

[11]  D. P. Fromm,et al.  Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. , 2006, Nano letters.

[12]  R. Adato,et al.  On chip plasmonic monopole nano-antennas and circuits. , 2011, Nano letters.

[13]  Lukas Novotny,et al.  High-resolution near-field Raman microscopy of single-walled carbon nanotubes. , 2003, Physical review letters.

[14]  M. El-Sayed,et al.  Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant , 1999 .

[15]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[16]  Zongfu Yu,et al.  Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna , 2009 .

[17]  Theeradetch Detchprohm,et al.  GaInN∕GaN growth optimization for high-power green light-emitting diodes , 2004 .

[18]  Reinhard Guckenberger,et al.  High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. , 2004, Physical review letters.

[19]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[20]  F. Keilmann,et al.  Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe , 2002 .

[21]  Miguel Navarro-Cia,et al.  Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation. , 2012, ACS nano.

[22]  Sreemanth M. V. Uppuluri,et al.  Nanolithography using high transmission nanoscale bowtie apertures. , 2006, Nano letters.

[23]  S. Retterer,et al.  Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. , 2010, Nano letters.

[24]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[25]  Dieter W. Pohl,et al.  Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy , 2007 .

[26]  Javier Aizpurua,et al.  Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. , 2008, ACS nano.

[27]  Fernando D Stefani,et al.  Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. , 2008, Optics express.

[28]  Holger F. Hofmann,et al.  Design parameters for a nano-optical Yagi–Uda antenna , 2007, cond-mat/0703595.

[29]  Lukas Novotny,et al.  Optical Antennas , 2009 .

[30]  Giorgio Volpe,et al.  Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet. , 2011, Optics express.

[31]  E. Soliman Wideband nanocrescent plasmonic antenna with engineered spectral response , 2013 .

[32]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .