SICs and Algebraic Number Theory

We give an overview of some remarkable connections between symmetric informationally complete measurements (SIC-POVMs, or SICs) and algebraic number theory, in particular, a connection with Hilbert’s 12th problem. The paper is meant to be intelligible to a physicist who has no prior knowledge of either Galois theory or algebraic number theory.

[1]  Blake C. Stacey,et al.  Introducing the Qplex: a novel arena for quantum theory , 2016, 1612.03234.

[2]  A. J. Scott Tight informationally complete quantum measurements , 2006, quant-ph/0604049.

[3]  Aephraim M. Steinberg,et al.  Experimental characterization of qutrits using SIC-POVMs , 2010 .

[4]  Huangjun Zhu SIC POVMs and Clifford groups in prime dimensions , 2010, 1003.3591.

[5]  D. M. Appleby Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .

[6]  Aephraim M. Steinberg,et al.  Experimental characterization of qutrits using symmetric informationally complete positive operator-valued measurements , 2011 .

[7]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[8]  Huangjun Zhu,et al.  Super-symmetric informationally complete measurements , 2014, 1412.1099.

[9]  Kronecker's Jugendtraum and modular functions , 1992 .

[10]  Shayne Waldron,et al.  Constructing exact symmetric informationally complete measurements from numerical solutions , 2017, 1703.05981.

[11]  T. Durt,et al.  Wigner tomography of two-qubit states and quantum cryptography , 2008, 0806.0272.

[12]  A. J. Scott,et al.  Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .

[13]  W. Wootters A Wigner-function formulation of finite-state quantum mechanics , 1987 .

[14]  Marcus Appleby,et al.  Generating ray class fields of real quadratic fields via complex equiangular lines , 2016, Acta Arithmetica.

[15]  Sean Hallgren,et al.  Polynomial-time quantum algorithms for Pell's equation and the principal ideal problem , 2002, STOC '02.

[16]  Vadym Kliuchnikov,et al.  A framework for exact synthesis , 2015, ArXiv.

[17]  S. G. Hoggar 64 Lines from a Quaternionic Polytope , 1998 .

[18]  Romanos Malikiosis,et al.  Spark deficient Gabor frames , 2016, 1602.09012.

[19]  A. Delgado,et al.  Minimum tomography of two entangled qutrits using local measurements of one-qutrit symmetric informationally complete positive operator-valued measure , 2013 .

[20]  Ruediger Schack,et al.  Quantum-Bayesian Coherence , 2009, 1301.3274.

[21]  Xinhua Peng,et al.  Realization of entanglement-assisted qubit-covariant symmetric-informationally-complete positive-operator-valued measurements , 2006 .

[22]  Sergios Theodoridis,et al.  A Novel Efficient Cluster-Based MLSE Equalizer for Satellite Communication Channels with-QAM Signaling , 2006, EURASIP J. Adv. Signal Process..

[23]  Huangjun Zhu,et al.  Quantum state tomography with fully symmetric measurements and product measurements , 2011 .

[24]  David Marcus Appleby,et al.  Properties of the extended Clifford group with applications to SIC-POVMs and MUBs , 2009, 0909.5233.

[25]  Blake C. Stacey Sporadic SICs and the Normed Division Algebras , 2016 .

[26]  Fang Song,et al.  A quantum algorithm for computing the unit group of an arbitrary degree number field , 2014, STOC.

[27]  Blake C. Stacey,et al.  QBism: Quantum Theory as a Hero's Handbook , 2016, 1612.07308.

[28]  A. Robert Calderbank,et al.  The Finite Heisenberg-Weyl Groups in Radar and Communications , 2006, EURASIP J. Adv. Signal Process..

[29]  Sean Hallgren,et al.  Fast quantum algorithms for computing the unit group and class group of a number field , 2005, STOC '05.

[30]  Neil J. Ross,et al.  Optimal ancilla-free Clifford+T approximation of z-rotations , 2014, Quantum Inf. Comput..

[31]  Masahide Sasaki,et al.  Squeezing quantum information through a classical channel: measuring the "quantumness" of a set of quantum states , 2003, Quantum Inf. Comput..

[32]  G. Zauner,et al.  QUANTUM DESIGNS: FOUNDATIONS OF A NONCOMMUTATIVE DESIGN THEORY , 2011 .

[33]  Harvey Cohn,et al.  A classical invitation to algebraic numbers and class fields , 1978 .

[34]  David A. Cox Primes of the Form x2 + ny2: Fermat, Class Field Theory, and Complex Multiplication , 1989 .

[35]  Ingemar Bengtsson,et al.  The Number Behind the Simplest SIC–POVM , 2016, Foundations of Physics.

[36]  D. M. Appleby SIC-POVMs and the Extended Clifford Group , 2004 .

[37]  Dagomir Kaszlikowski,et al.  Efficient and robust quantum key distribution with minimal state tomography , 2008 .

[38]  Huangjun Zhu,et al.  Quasiprobability Representations of Quantum Mechanics with Minimal Negativity. , 2016, Physical review letters.

[39]  David Marcus Appleby,et al.  Galois automorphisms of a symmetric measurement , 2012, Quantum Inf. Comput..

[40]  Huangjun Zhu,et al.  Mutually unbiased bases as minimal Clifford covariant 2-designs , 2015, 1505.01123.

[41]  I. D. Ivonovic Geometrical description of quantal state determination , 1981 .

[42]  D. Kaszlikowski,et al.  Minimal qubit tomography , 2004, quant-ph/0405084.

[43]  H. Dubner,et al.  Primes of the form . , 2000 .