Majority-vote on directed Erdős–Rényi random graphs

[1]  F. Lima,et al.  Majority-Vote On Directed Small-World Networks , 2007, cond-mat/0701381.

[2]  Horacio S. Wio,et al.  Contrarian-like behavior and system size stochastic resonance in an opinion spreading model , 2006 .

[3]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[4]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[5]  T. Tomé,et al.  Entropy production in the majority-vote model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Juan M. López,et al.  Spontaneous emergence of contrarian-like behaviour in an opinion spreading model , 2005, physics/0508029.

[7]  Serge Galam,et al.  Local dynamics vs. social mechanisms: A unifying frame , 2005 .

[8]  F. Lima,et al.  Majority-vote model on a random lattice. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  F. Moreira,et al.  Majority-vote model on random graphs. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  A. Sousa Consensus formation on a triad scale-free network , 2004, cond-mat/0406390.

[11]  J. S. Martins,et al.  Computer simulations of statistical models and dynamic complex systems , 2004 .

[12]  H. Herrmann,et al.  OPINION FORMATION ON A DETERMINISTIC PSEUDO-FRACTAL NETWORK , 2003, cond-mat/0307537.

[13]  F. Moreira,et al.  Small-world effects in the majority-vote model. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  James E. Gubernatis,et al.  The Monte Carlo method in the physical sciences : celebrating the 50th anniversary of the metropolis algorithm : Los Alamos, New Mexico 9-11 June 2003 , 2003 .

[15]  S. Galam Minority opinion spreading in random geometry , 2002, cond-mat/0203553.

[16]  D. Stauffer,et al.  Ferromagnetic phase transition in Barabási–Albert networks , 2001, cond-mat/0112312.

[17]  Juan M. López,et al.  Nonequilibrium phase transitions in directed small-world networks. , 2001, Physical review letters.

[18]  Guillaume Deffuant,et al.  Meet, discuss, and segregate! , 2002, Complex..

[19]  M. Hasenbusch MONTE CARLO STUDIES OF THE THREE-DIMENSIONAL ISING MODEL IN EQUILIBRIUM , 2001 .

[20]  Serge Galam,et al.  Real space renormalization group and totalitarian paradox of majority rule voting , 2000 .

[21]  Katarzyna Sznajd-Weron,et al.  Opinion evolution in closed community , 2000, cond-mat/0101130.

[22]  M. P. Almeida,et al.  Critical behavior of a three-state Potts model on a Voronoi lattice , 2000, cond-mat/0008285.

[23]  J. S. Andrade,et al.  The ferromagnetic Ising model on a Voronoi–Delaunay lattice , 2000 .

[24]  Guillaume Deffuant,et al.  Mixing beliefs among interacting agents , 2000, Adv. Complex Syst..

[25]  M. Newman,et al.  Scaling and percolation in the small-world network model. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  M. Newman,et al.  Renormalization Group Analysis of the Small-World Network Model , 1999, cond-mat/9903357.

[27]  N. Ortega,et al.  Critical behavior of a probabilistic cellular automaton describing a biological system , 1998 .

[28]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[29]  M. A. Santos,et al.  Short-time dynamics of a two-dimensional majority vote model , 1997, cond-mat/9707244.

[30]  Tomé,et al.  Probabilistic cellular automaton describing a biological immune system. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  M. A. Santos,et al.  Anisotropic voter model , 1995 .

[32]  Gupta,et al.  Two-temperature nonequilibrium Ising models: Critical behavior and universality. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  M. J. Oliveira,et al.  Nonequilibrium spin models with Ising universal behaviour , 1993 .

[34]  A. Fisher,et al.  The Theory of Critical Phenomena: An Introduction to the Renormalization Group , 1992 .

[35]  A. Fisher,et al.  The Theory of critical phenomena , 1992 .

[36]  S. Galam Social paradoxes of majority rule voting and renormalization group , 1990 .

[37]  Vladimir Privman,et al.  Finite Size Scaling and Numerical Simulation of Statistical Systems , 1990 .

[38]  D. Stauffer Monte Carlo simulations in statistical physics , 1988 .

[39]  Serge Gallam Majority rule, hierarchical structures, and democratic totalitarianism: a statistical approach , 1986 .

[40]  Grinstein,et al.  Statistical mechanics of probabilistic cellular automata. , 1985, Physical review letters.

[41]  Particle systems, random media, and large deviations , 1985 .

[42]  Kurt Binder,et al.  Finite size scaling analysis of ising model block distribution functions , 1981 .

[43]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[44]  W. Lenz,et al.  Beitrag zum Verständnis der magnetischen Erscheinungen in festen Körpern , 1920 .