Majority-vote on directed Erdős–Rényi random graphs
暂无分享,去创建一个
[1] F. Lima,et al. Majority-Vote On Directed Small-World Networks , 2007, cond-mat/0701381.
[2] Horacio S. Wio,et al. Contrarian-like behavior and system size stochastic resonance in an opinion spreading model , 2006 .
[3] V. Latora,et al. Complex networks: Structure and dynamics , 2006 .
[4] Alan M. Frieze,et al. Random graphs , 2006, SODA '06.
[5] T. Tomé,et al. Entropy production in the majority-vote model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[6] Juan M. López,et al. Spontaneous emergence of contrarian-like behaviour in an opinion spreading model , 2005, physics/0508029.
[7] Serge Galam,et al. Local dynamics vs. social mechanisms: A unifying frame , 2005 .
[8] F. Lima,et al. Majority-vote model on a random lattice. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[9] F. Moreira,et al. Majority-vote model on random graphs. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[10] A. Sousa. Consensus formation on a triad scale-free network , 2004, cond-mat/0406390.
[11] J. S. Martins,et al. Computer simulations of statistical models and dynamic complex systems , 2004 .
[12] H. Herrmann,et al. OPINION FORMATION ON A DETERMINISTIC PSEUDO-FRACTAL NETWORK , 2003, cond-mat/0307537.
[13] F. Moreira,et al. Small-world effects in the majority-vote model. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[14] James E. Gubernatis,et al. The Monte Carlo method in the physical sciences : celebrating the 50th anniversary of the metropolis algorithm : Los Alamos, New Mexico 9-11 June 2003 , 2003 .
[15] S. Galam. Minority opinion spreading in random geometry , 2002, cond-mat/0203553.
[16] D. Stauffer,et al. Ferromagnetic phase transition in Barabási–Albert networks , 2001, cond-mat/0112312.
[17] Juan M. López,et al. Nonequilibrium phase transitions in directed small-world networks. , 2001, Physical review letters.
[18] Guillaume Deffuant,et al. Meet, discuss, and segregate! , 2002, Complex..
[19] M. Hasenbusch. MONTE CARLO STUDIES OF THE THREE-DIMENSIONAL ISING MODEL IN EQUILIBRIUM , 2001 .
[20] Serge Galam,et al. Real space renormalization group and totalitarian paradox of majority rule voting , 2000 .
[21] Katarzyna Sznajd-Weron,et al. Opinion evolution in closed community , 2000, cond-mat/0101130.
[22] M. P. Almeida,et al. Critical behavior of a three-state Potts model on a Voronoi lattice , 2000, cond-mat/0008285.
[23] J. S. Andrade,et al. The ferromagnetic Ising model on a Voronoi–Delaunay lattice , 2000 .
[24] Guillaume Deffuant,et al. Mixing beliefs among interacting agents , 2000, Adv. Complex Syst..
[25] M. Newman,et al. Scaling and percolation in the small-world network model. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[26] M. Newman,et al. Renormalization Group Analysis of the Small-World Network Model , 1999, cond-mat/9903357.
[27] N. Ortega,et al. Critical behavior of a probabilistic cellular automaton describing a biological system , 1998 .
[28] Duncan J. Watts,et al. Collective dynamics of ‘small-world’ networks , 1998, Nature.
[29] M. A. Santos,et al. Short-time dynamics of a two-dimensional majority vote model , 1997, cond-mat/9707244.
[30] Tomé,et al. Probabilistic cellular automaton describing a biological immune system. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[31] M. A. Santos,et al. Anisotropic voter model , 1995 .
[32] Gupta,et al. Two-temperature nonequilibrium Ising models: Critical behavior and universality. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[33] M. J. Oliveira,et al. Nonequilibrium spin models with Ising universal behaviour , 1993 .
[34] A. Fisher,et al. The Theory of Critical Phenomena: An Introduction to the Renormalization Group , 1992 .
[35] A. Fisher,et al. The Theory of critical phenomena , 1992 .
[36] S. Galam. Social paradoxes of majority rule voting and renormalization group , 1990 .
[37] Vladimir Privman,et al. Finite Size Scaling and Numerical Simulation of Statistical Systems , 1990 .
[38] D. Stauffer. Monte Carlo simulations in statistical physics , 1988 .
[39] Serge Gallam. Majority rule, hierarchical structures, and democratic totalitarianism: a statistical approach , 1986 .
[40] Grinstein,et al. Statistical mechanics of probabilistic cellular automata. , 1985, Physical review letters.
[41] Particle systems, random media, and large deviations , 1985 .
[42] Kurt Binder,et al. Finite size scaling analysis of ising model block distribution functions , 1981 .
[43] E. Ising. Beitrag zur Theorie des Ferromagnetismus , 1925 .
[44] W. Lenz,et al. Beitrag zum Verständnis der magnetischen Erscheinungen in festen Körpern , 1920 .