ZnO–Si side-to-side biaxial nanowire heterostructures with improved luminescence

Using as-obtained ZnS–Si biaxial nanowires as templates, which were prepared via a thermal evaporation of a mixed powder of SiO and ZnS under controlled temperature, ZnO–Si biaxial nanowire heterostructures were achieved by a simple post-oxidation process. Each ZnO–Si composite nanowire has a uniform diameter along its whole length; the typical diameter of the nanowires ranges from 100 to 500 nm, and the diameters of Si- and ZnO-side sub-nanowires within a nanowire heterostructure are ∼50–250 nm. Significant enhancement of green luminescence compared to the ZnO nanowires has been observed from these ZnO–Si biaxial nanowire heterostructures, which may find the applications in short wavelength photoelectric devices, fluorescence labels, and biological detectors. The present template-assisted method demonstrated here could be a general approach of fabricating nanowire heterostructures made of Si-based materials.

[1]  Junqing Hu,et al.  Gallium nitride nanotubes by the conversion of gallium oxide nanotubes. , 2003, Angewandte Chemie.

[2]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[3]  Yongxiang Li,et al.  Fabrication of highly ordered ZnO nanowire arrays in anodic alumina membranes , 2000 .

[4]  Lars Samuelson,et al.  Epitaxially grown GaP/GaAs1−xPx/GaP double heterostructure nanowires for optical applications , 2005 .

[5]  William L. Warren,et al.  Correlation between photoluminescence and oxygen vacancies in ZnO phosphors , 1996 .

[6]  Y. Bando,et al.  Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures. , 2008, Nano letters.

[7]  S. T. Lee,et al.  Small-Diameter Silicon Nanowire Surfaces , 2003, Science.

[8]  Takashi Sekiguchi,et al.  Epitaxial heterostructures: side-to-side Si-ZnS, Si-ZnSe biaxial nanowires, and sandwichlike ZnS-Si-ZnS triaxial nanowires. , 2003, Journal of the American Chemical Society.

[9]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[10]  S. Monticone,et al.  Complex Nature of the UV and Visible Fluorescence of Colloidal ZnO Nanoparticles. , 1998, The journal of physical chemistry. B.

[11]  Shui-Tong Lee,et al.  Coaxial three-layer nanocables synthesized by combining laser ablation and thermal evaporation , 2000 .

[12]  Shouwu Guo,et al.  Insight into the Structures and Properties of Morphology-Controlled Legs of Tetrapod-Like ZnO Nanostructures , 2007 .

[13]  J. Borel Thermodynamical size effect and the structure of metallic clusters , 1981 .

[14]  Lars Samuelson,et al.  One-dimensional steeplechase for electrons realized , 2002 .

[15]  P. Yang,et al.  Functional Bimorph Composite Nanotapes , 2002 .

[16]  Junqing Hu,et al.  Single‐Catalyst Confined Growth of ZnS/Si Composite Nanowires , 2005 .

[17]  Hao Wu,et al.  Textured Tubular Nanoparticle Structures: Precursor‐Templated Synthesis of GaN Sub‐micrometer Sized Tubes , 2007 .

[18]  Ning Wang,et al.  FORMATION OF ZNO NANOSTRUCTURES BY A SIMPLE WAY OF THERMAL EVAPORATION , 2002 .

[19]  Bruce E. Gnade,et al.  Mechanisms behind green photoluminescence in ZnO phosphor powders , 1996 .

[20]  Zhong Lin Wang,et al.  Rectangular Porous ZnO–ZnS Nanocables and ZnS Nanotubes , 2002 .

[21]  Lars Samuelson,et al.  One-dimensional heterostructures in semiconductor nanowhiskers , 2002 .

[22]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[23]  S. T. Lee,et al.  Semiconductor nanowires from oxides , 1999 .

[24]  P. Searson,et al.  ZnO quantum particle thin films fabricated by electrophoretic deposition , 1999 .

[25]  L. Qi,et al.  Morphosynthesis of rhombododecahedral silver cages by self-assembly coupled with precursor crystal templating. , 2005, Angewandte Chemie.

[26]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[27]  Horst Weller,et al.  Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects☆ , 1985 .

[28]  W. Prost,et al.  Growth and characterisation of GaAs/InGaAs/GaAs nanowhiskers on (111) GaAs , 2007 .

[29]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[30]  L. Samuelson,et al.  InAs1-xPx nanowires for device engineering. , 2006, Nano letters.