Electrically Reconfigurable Metasurfaces Using Heterojunction Resonators

An electrically reconfigurable metasurface comprising an array of 1D semiconductor Mie resonators on a reflecting ground plane is theoretically demonstrated. The design is based on magnetic dipole modes that interfere with image fields in a metal substrate to produce a 2π phase shift in reflection about the resonance wavelength. Analogous voltage-dependent phase shifts are produced using novel InSb/In0.8Al0.2Sb heterojunction resonators incorporating top electrodes that minimize perturbations of the electromagnetic mode. The devices exploit large swings in the InSb electron density to produce mid-infrared resonances tunable through free carrier refraction. Combined electrical device and full wave electromagnetic simulations show up to 300° phase shifts with less than 1dB of loss. Using this resonator as a basic building block, an electrically tunable metasurface is demonstrated. By applying a voltage gradient across the metasurface, an incident beam is steered in a unidirectional fashion continuously between ±72° (from normal incidence. This work describes a pathway to unprecedented control of light via electrically reconfigurable metasurfaces.

[1]  P. R. West,et al.  All-dielectric subwavelength metasurface focusing lens. , 2014, Optics express.

[2]  R. M. Biefeld,et al.  InAsSb‐based mid‐infrared lasers (3.8–3.9 μm) and light‐emitting diodes with AlAsSb claddings and semimetal electron injection, grown by metalorganic chemical vapor deposition , 1996 .

[3]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[4]  Anthony Grbic,et al.  Efficient light bending with isotropic metamaterial Huygens' surfaces. , 2014, Nano letters.

[5]  Bumsu Lee,et al.  Fano Resonance and Spectrally Modified Photoluminescence Enhancement in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Array. , 2015, Nano letters.

[6]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[7]  Norman,et al.  Midinfrared picosecond spectroscopy studies of Auger recombination in InSb. , 1995, Physical review. B, Condensed matter.

[8]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[9]  I. Brener,et al.  Electrically tunable infrared metamaterials based on depletion-type semiconductor devices , 2012 .

[10]  Suman Datta,et al.  III-V field-effect transistors for low power digital logic applications , 2007 .

[11]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[12]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[13]  Philippe Christol,et al.  MWIR InSb detector with nBn architecture for high operating temperature , 2015, SPIE OPTO.

[14]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[15]  A. Strauss Distribution Coefficients and Carrier Mobilities in InSb , 1959 .

[16]  A. Krier Mid-infrared Semiconductor Optoelectronics , 2006 .

[17]  Carl R. Pidgeon,et al.  Auger recombination in long-wavelength infrared InNxSb1−x alloys , 2001 .

[18]  E. Litwin-Staszewska,et al.  The Electron Mobility and Thermoelectric Power in InSb at Atmospheric and Hydrostatic Pressures , 1981 .

[19]  Z. Jacob,et al.  All-dielectric metamaterials. , 2016, Nature nanotechnology.

[20]  W. K. Liu,et al.  Molecular‐beam epitaxial growth and characterization of AlxIn1−xSb/InSb quantum well structures , 1996 .

[21]  D. Wasserman,et al.  Mid-infrared designer metals , 2012, IEEE Photonics Conference 2012.

[22]  Harry A. Atwater,et al.  Electronic modulation of infrared radiation in graphene plasmonic resonators. , 2015, Nature communications.

[23]  N. Zheludev,et al.  Reconfigurable nanomechanical photonic metamaterials. , 2016, Nature nanotechnology.

[24]  Azizollah Shafiekhani,et al.  Passivation of InSb surface for manufacturing infrared devices , 2008 .

[25]  Tal Fishman,et al.  3D simulation of detector parameters for backside illuminated InSb 2D arrays , 2007, SPIE Organic Photonics + Electronics.

[26]  J. Kong,et al.  Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. , 2014, Nano letters.

[27]  W. Goodhue,et al.  Voltage-controlled active mid-infrared plasmonic devices , 2011 .

[28]  F. Meseguer,et al.  Mirror-image-induced magnetic modes. , 2013, ACS nano.

[29]  Nikita A. Butakov,et al.  Reconfigurable Semiconductor Phased-Array Metasurfaces , 2015 .

[30]  John F. Klem,et al.  Temperature-dependent optical measurements of the dominant recombination mechanisms in InAs/InAsSb type-2 superlattices , 2015 .

[31]  A surface-gated InSb quantum well single electron transistor , 2007, 0704.3897.

[32]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[33]  S. Lord A new software tool for computing Earth's atmospheric transmission of near- and far-infrared radiation , 1992 .

[34]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[35]  Yuanmu Yang,et al.  All-dielectric metasurface analogue of electromagnetically induced transparency , 2014, Nature Communications.

[36]  Sailing He,et al.  Deterministic phase engineering for optical Fano resonances with arbitrary lineshape and frequencies. , 2015, Optics express.

[37]  Fano-like resonances sustained by Si doped InAsSb plasmonic resonators integrated in GaSb matrix. , 2015, Optics express.

[38]  Zongfu Yu,et al.  Semiconductor nanowire optical antenna solar absorbers. , 2010, Nano letters.

[39]  Ian S. Glass,et al.  Handbook of Infrared Astronomy: Photometry , 1999 .

[40]  Neil T. Gordon,et al.  Uncooled InSb/In1−xAlxSb mid‐infrared emitter , 1994 .

[41]  M. Brongersma,et al.  Creating semiconductor metafilms with designer absorption spectra , 2015, Nature Communications.

[42]  R. Agarwal,et al.  Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate. , 2016, Nano letters.

[43]  Active terahertz beam steering by photo-generated graded index gratings in thin semiconductor films. , 2014, Optics express.

[44]  Viktor A. Podolskiy,et al.  All-semiconductor negative-index plasmonic absorbers. , 2014 .

[45]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[46]  Federico Capasso,et al.  Achromatic Metasurface Lens at Telecommunication Wavelengths. , 2015, Nano letters.

[47]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[48]  T.L. Koch,et al.  A fully monolithic InSb infrared CCD array , 1980, IEEE Transactions on Electron Devices.

[49]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[50]  Yuri S. Kivshar,et al.  High‐Efficiency Dielectric Huygens’ Surfaces , 2015 .

[51]  W. Goodhue,et al.  Mid-infrared doping tunable transmission through subwavelength metal hole arrays on InSb. , 2009, Optics express.

[52]  Andrea Alù,et al.  Ultrafast Electrically Tunable Polaritonic Metasurfaces , 2014 .

[53]  J. Schuller,et al.  Hybrid optical antennas with photonic resistors. , 2015, Optics express.

[54]  Christos Argyropoulos,et al.  Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene. , 2015, Optics express.

[55]  Mark L Brongersma,et al.  General properties of dielectric optical antennas. , 2009, Optics express.

[56]  R. Osgood,et al.  Dielectric particle and void resonators for thin film solar cell textures. , 2011, Optics express.

[57]  P. Paskov,et al.  Calculation of the carrier-induced refractive index change in InSb , 1992 .

[58]  Zhen Peng,et al.  Flat dielectric grating reflectors with focusing abilities , 2010, 1001.3711.