We report on the first successful installation of a commercial solid-state sodium guidestar laser system (GLS). The GLS developed at LMCT was delivered to Gemini North Observatory in February of 2005. The laser is a single beacon system that implements a novel laser architecture and represents a critical step towards addressing the need of the astronomy and military adaptive optics (AO) communities for a robust turn-key commercial GLS. The laser was installed on the center section of the 8 m Gemini North telescope, with the output beam relayed to a laser launch telescope located behind the 1 m diameter secondary mirror. The laser went through a three week performance evaluation between November and December 2005 wherein it consistently generated 12 W average power with measured M2 < 1.1 while locked to the D2 line at +/- 100 MHz. The system was required to perform during a 12-hour test period during three runs of 4-6 consecutive nights each. The laser architecture is based on continuous wave (CW) mode-locked solid-state lasers. The mode-locked format enables more efficient SFG conversion, and dispenses with complex resonant intensity enhancement systems and injection-locking electronics. The linearly-polarized, near-diffraction-limited, modelocked 1319 nm and 1064 nm pulses are generated in separate dual-head diode-pumped resonators. The two IR pulses are input into a single-stage, 30 mm PPSLT sum-frequency generation (SFG) crystal provided by Physical Science, Inc. Visible (589 nm) power of >16 W have been generated, representing a conversion efficiency of 40%.