The application of heterojunction structures to optical devices

Basic factors are reviewed that enter into the successful operation of single crystal heterojunction devices, with an emphasis on the role of defects. The devices discussed include laser diodes, solar cells and electron emitters using negative electron affinity surfaces.

[1]  R. Rediker,et al.  The graded‐gap Alx Ga1 − x As–GaAs heterojunction , 1972 .

[2]  L. R. Weisberg,et al.  Dislocation morphology in graded heterojunctions: GaAs1−xPx , 1969 .

[3]  A. R. Gobat,et al.  Characteristics of High-Conversion-Efficiency Gallium-Arsenide Solar Cells , 1962, IRE Transactions on Military Electronics.

[4]  H. Nelson,et al.  Properties and Applications of III–V Compound Films Deposited by Liquid Phase Epitaxy , 1973 .

[5]  T. Moss,et al.  Calculated efficiencies of practical GaAs and Si solar cells including the effect of built-in electric fields , 1968 .

[6]  H. Kogelnik,et al.  Coupled‐Wave Theory of Distributed Feedback Lasers , 1972 .

[7]  F. Frank,et al.  One-dimensional dislocations. II. Misfitting monolayers and oriented overgrowth , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[8]  B. F. Williams,et al.  Current status of negative electron affinity devices , 1971 .

[9]  R. Logan,et al.  Monolithically integrated AlGaAs double heterostructure optical components , 1974 .

[10]  H. Kressel,et al.  Large‐Optical‐Cavity (AlGa) As–GaAs Heterojunction Laser Diode: Threshold and Efficiency , 1972 .

[11]  I. Hayashi,et al.  A low-threshold room-temperature injection laser , 1969 .

[12]  James J. Coleman,et al.  Liquid phase epitaxial In1-x Gax P1-z Asz/GaAs1-y Py quaternary (LPE)-ternary (VPE) heterojunction lasers (x ∼0.70, z ∼0.01, y ∼0.40; λ < 6300 Å, 77°K) , 1974 .

[13]  D. G. Fisher,et al.  Photoemission characteristics of transmission-mode negative electron affinity GaAs and (ln,Ga)As vapor-grown structures , 1974 .

[14]  B. I. Miller,et al.  Double‐heterostructure GaAs distributed‐feedback laser , 1974 .

[15]  J. Woodall,et al.  High‐efficiency Ga1−xAlxAs–GaAs solar cells , 1972 .

[16]  Resonant cavities with mirrors made from graded‐index rods , 1974 .

[17]  R. H. Saul Reduced Dislocation Densities in Liquid Phase Epitaxy Layers by Intermittent Growth , 1971 .

[18]  M. S. Abrahams,et al.  Like‐sign asymmetric dislocations in zinc‐blende structure , 1972 .

[19]  G. Olsen,et al.  Room‐temperature heterojunction laser diodes of InxGa1−xAs/InyGa1−yP with emission wavelength between 0.9 and 1.15 μm , 1975 .

[20]  R. Moon,et al.  Growth and Characterization of InP ‐ lnGaAsP Lattice-Matched Heterojunctions , 1973 .

[21]  G. B. Stringfellow,et al.  Dislocations in GaAs17−xPx , 1969 .

[22]  D. Scifres,et al.  Distributed‐feedback single heterojunction GaAs diode laser , 1974 .

[23]  A. G. Milnes,et al.  Heterojunctions and Metal Semiconductor Junctions , 1972 .

[24]  M. S. Abrahams,et al.  Asymmetric Cracking in III – V Compounds , 1974 .

[25]  S. H. McFarlane,et al.  Properties of high‐voltage silicon epitaxial diodes , 1974 .

[26]  B. I. Miller,et al.  Small-area, double-heterostructure aluminum-gallium arsenide electroluminescent diode sources for optical-fiber transmission lines , 1971 .

[27]  P. Petroff,et al.  Control of lattice parameters and dislocations in the system Ga1−xAlxAs1−yPy/GaAs , 1974 .

[28]  P. Brosson,et al.  Behavior of threshold current and polarization of stimulated emission of GaAs injection lasers under uniaxial stress , 1973 .

[29]  J. Butler,et al.  Measurements of refractive index step and of carrier confinement at (AlGa)As–GaAs heterojunctions , 1973 .

[30]  R. Clough,et al.  The preparation and properties of vapor- deposited epitaxial InAs sub 1-x P sub x using arsine and phosphine. , 1966 .

[31]  Sigurd Wagner,et al.  CuInSe2/CdS heterojunction photovoltaic detectors , 1974 .

[32]  L. R. Weisberg,et al.  AN OPTOELECTRONIC COLD CATHODE USING AN AlxGa1−xAs HETEROJUNCTION STRUCTURE , 1970 .

[33]  H. Sommers,et al.  AN EFFICIENT LARGE OPTICAL CAVITY INJECTION LASER , 1970 .

[34]  H. Kressel,et al.  Luminescence due to Ge Acceptors in GaAs , 1968 .

[35]  D. B. Holt Misfit dislocations in semiconductors , 1966 .

[36]  E. W. Williams Photoluminescence of epitaxial n-type GaAs at 20°K , 1966 .

[37]  H. W. Yen,et al.  GaAs–Ga1−xAlxAs double‐heterostructure distributed‐feedback diode lasers , 1974 .

[38]  H. Nagai Anisotropic bending during epitaxial growth of mixed crystals on GaAs substrate , 1972 .

[39]  I. Hayashi,et al.  Germanium‐Doped Gallium Arsenide , 1970 .

[40]  K. Sugiyama,et al.  GaAsSb-AlGaAsSb Double Heterojunction Lasers , 1972 .

[41]  Paul Anthony Kirkby,et al.  GaAl)As lasers with a heterostructure for optical confinement and additional heterojunctions for extreme carrier confinement , 1973 .

[42]  P. Petroff,et al.  Elimination of dislocations in heteroepitaxial layers by the controlled introduction of interfacial misfit dislocations , 1974 .

[43]  A. Cho,et al.  GaAs–Alx Ga1−x As double‐heterostructure lasers prepared by molecular‐beam epitaxy , 1974 .

[44]  S. Wagner,et al.  p−InP/n−CdS solar cells and photovoltaic detectors , 1975 .

[45]  H. Kasano,et al.  Cathodoluminescence of compositionally graded layers of GaAs1−xPx , 1975 .

[46]  A. Yariv,et al.  Guided wave optics , 1974 .

[47]  H. Kressel,et al.  Multiple layer (AlGa)As-GaAs heterojunction laser diodes: Synthesis and mode control* , 1974 .

[48]  C. Fonstad,et al.  Threshold reduction in Pb1−xSnx Te laser diodes through the use of double heterojunction geometries , 1974 .

[49]  K. W. Nill,et al.  Double heterostructure Pb1‐xSnx Te–PbTe lasers with cw operation at 77 K , 1974 .

[50]  M. C. Rowland,et al.  An improved GaAs transmission photocathode , 1972 .

[51]  M. Ettenberg,et al.  Degradation of AlxGa1−xAs heterojunction electroluminescent devices , 1974 .

[52]  G. Rozgonyi,et al.  X‐Ray Determination of Stresses in Thin Films and Substrates by Automatic Bragg Angle Control , 1973 .

[53]  H. Queisser,et al.  Photoluminescence at Dislocations in GaAs , 1974 .

[54]  M. S. Abrahams,et al.  Interdependence of strain, precipitation, and dislocation formation in epitaxial Se‐doped GaAs , 1974 .

[55]  H. Schade,et al.  EFFICIENT ELECTRON EMISSION FROM GaAs–Al1−xGaxAs OPTOELECTRONIC COLD‐CATHODE STRUCTURES , 1971 .

[56]  M. Ettenberg Effects of dislocation density on the properties of liquid phase epitaxial GaAs , 1974 .

[57]  N. Holonyak,et al.  AlxGa1−xAs1−y′P y′–GaAs1−yPy HETEROSTRUCTURE LASER AND LAMP JUNCTIONS , 1970 .

[58]  J. McVittie,et al.  Single heterojunction Pb1−x Snx Te diode lasers , 1973 .

[59]  Gregory H. Olsen,et al.  Room‐temperature heterojunction laser diodes from vapor‐grown In1−xGaxP/GaAs structures , 1974 .

[60]  H. Kressel Gallium arsenide and (alga)as devices prepared by Liquid-Phase epitaxy (Review Article) , 1974 .

[61]  D. G. Fisher,et al.  The application of semiconductors with negative electron affinity surfaces to electron emission devices , 1974 .

[62]  A. Fahrenbruch,et al.  II‐VI photovoltaic heterojunctions for solar energy conversion , 1974 .

[63]  H. M. Macksey,et al.  Double Heterojunction AlGaAsP Quaternary Lasers , 1971 .

[64]  P. Petroff,et al.  Defect structure introduced during operation of heterojunction GaAs lasers , 1973 .

[65]  O. Berolo,et al.  Electroreflectance Spectra of AlxGa1−xAs Alloys , 1971 .

[66]  M. Craford,et al.  GaAs ‐ GaAsP Heterostructure Injection Lasers , 1971 .

[67]  H. Kressel,et al.  Influence of device fabrication parameters on gradual degradation of /AlGa/As cw laser diodes , 1974 .