The application of heterojunction structures to optical devices
暂无分享,去创建一个
[1] R. Rediker,et al. The graded‐gap Alx Ga1 − x As–GaAs heterojunction , 1972 .
[2] L. R. Weisberg,et al. Dislocation morphology in graded heterojunctions: GaAs1−xPx , 1969 .
[3] A. R. Gobat,et al. Characteristics of High-Conversion-Efficiency Gallium-Arsenide Solar Cells , 1962, IRE Transactions on Military Electronics.
[4] H. Nelson,et al. Properties and Applications of III–V Compound Films Deposited by Liquid Phase Epitaxy , 1973 .
[5] T. Moss,et al. Calculated efficiencies of practical GaAs and Si solar cells including the effect of built-in electric fields , 1968 .
[6] H. Kogelnik,et al. Coupled‐Wave Theory of Distributed Feedback Lasers , 1972 .
[7] F. Frank,et al. One-dimensional dislocations. II. Misfitting monolayers and oriented overgrowth , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[8] B. F. Williams,et al. Current status of negative electron affinity devices , 1971 .
[9] R. Logan,et al. Monolithically integrated AlGaAs double heterostructure optical components , 1974 .
[10] H. Kressel,et al. Large‐Optical‐Cavity (AlGa) As–GaAs Heterojunction Laser Diode: Threshold and Efficiency , 1972 .
[11] I. Hayashi,et al. A low-threshold room-temperature injection laser , 1969 .
[12] James J. Coleman,et al. Liquid phase epitaxial In1-x Gax P1-z Asz/GaAs1-y Py quaternary (LPE)-ternary (VPE) heterojunction lasers (x ∼0.70, z ∼0.01, y ∼0.40; λ < 6300 Å, 77°K) , 1974 .
[13] D. G. Fisher,et al. Photoemission characteristics of transmission-mode negative electron affinity GaAs and (ln,Ga)As vapor-grown structures , 1974 .
[14] B. I. Miller,et al. Double‐heterostructure GaAs distributed‐feedback laser , 1974 .
[15] J. Woodall,et al. High‐efficiency Ga1−xAlxAs–GaAs solar cells , 1972 .
[16] Resonant cavities with mirrors made from graded‐index rods , 1974 .
[17] R. H. Saul. Reduced Dislocation Densities in Liquid Phase Epitaxy Layers by Intermittent Growth , 1971 .
[18] M. S. Abrahams,et al. Like‐sign asymmetric dislocations in zinc‐blende structure , 1972 .
[19] G. Olsen,et al. Room‐temperature heterojunction laser diodes of InxGa1−xAs/InyGa1−yP with emission wavelength between 0.9 and 1.15 μm , 1975 .
[20] R. Moon,et al. Growth and Characterization of InP ‐ lnGaAsP Lattice-Matched Heterojunctions , 1973 .
[21] G. B. Stringfellow,et al. Dislocations in GaAs17−xPx , 1969 .
[22] D. Scifres,et al. Distributed‐feedback single heterojunction GaAs diode laser , 1974 .
[23] A. G. Milnes,et al. Heterojunctions and Metal Semiconductor Junctions , 1972 .
[24] M. S. Abrahams,et al. Asymmetric Cracking in III – V Compounds , 1974 .
[25] S. H. McFarlane,et al. Properties of high‐voltage silicon epitaxial diodes , 1974 .
[26] B. I. Miller,et al. Small-area, double-heterostructure aluminum-gallium arsenide electroluminescent diode sources for optical-fiber transmission lines , 1971 .
[27] P. Petroff,et al. Control of lattice parameters and dislocations in the system Ga1−xAlxAs1−yPy/GaAs , 1974 .
[28] P. Brosson,et al. Behavior of threshold current and polarization of stimulated emission of GaAs injection lasers under uniaxial stress , 1973 .
[29] J. Butler,et al. Measurements of refractive index step and of carrier confinement at (AlGa)As–GaAs heterojunctions , 1973 .
[30] R. Clough,et al. The preparation and properties of vapor- deposited epitaxial InAs sub 1-x P sub x using arsine and phosphine. , 1966 .
[31] Sigurd Wagner,et al. CuInSe2/CdS heterojunction photovoltaic detectors , 1974 .
[32] L. R. Weisberg,et al. AN OPTOELECTRONIC COLD CATHODE USING AN AlxGa1−xAs HETEROJUNCTION STRUCTURE , 1970 .
[33] H. Sommers,et al. AN EFFICIENT LARGE OPTICAL CAVITY INJECTION LASER , 1970 .
[34] H. Kressel,et al. Luminescence due to Ge Acceptors in GaAs , 1968 .
[35] D. B. Holt. Misfit dislocations in semiconductors , 1966 .
[36] E. W. Williams. Photoluminescence of epitaxial n-type GaAs at 20°K , 1966 .
[37] H. W. Yen,et al. GaAs–Ga1−xAlxAs double‐heterostructure distributed‐feedback diode lasers , 1974 .
[38] H. Nagai. Anisotropic bending during epitaxial growth of mixed crystals on GaAs substrate , 1972 .
[39] I. Hayashi,et al. Germanium‐Doped Gallium Arsenide , 1970 .
[40] K. Sugiyama,et al. GaAsSb-AlGaAsSb Double Heterojunction Lasers , 1972 .
[41] Paul Anthony Kirkby,et al. GaAl)As lasers with a heterostructure for optical confinement and additional heterojunctions for extreme carrier confinement , 1973 .
[42] P. Petroff,et al. Elimination of dislocations in heteroepitaxial layers by the controlled introduction of interfacial misfit dislocations , 1974 .
[43] A. Cho,et al. GaAs–Alx Ga1−x As double‐heterostructure lasers prepared by molecular‐beam epitaxy , 1974 .
[44] S. Wagner,et al. p−InP/n−CdS solar cells and photovoltaic detectors , 1975 .
[45] H. Kasano,et al. Cathodoluminescence of compositionally graded layers of GaAs1−xPx , 1975 .
[46] A. Yariv,et al. Guided wave optics , 1974 .
[47] H. Kressel,et al. Multiple layer (AlGa)As-GaAs heterojunction laser diodes: Synthesis and mode control* , 1974 .
[48] C. Fonstad,et al. Threshold reduction in Pb1−xSnx Te laser diodes through the use of double heterojunction geometries , 1974 .
[49] K. W. Nill,et al. Double heterostructure Pb1‐xSnx Te–PbTe lasers with cw operation at 77 K , 1974 .
[50] M. C. Rowland,et al. An improved GaAs transmission photocathode , 1972 .
[51] M. Ettenberg,et al. Degradation of AlxGa1−xAs heterojunction electroluminescent devices , 1974 .
[52] G. Rozgonyi,et al. X‐Ray Determination of Stresses in Thin Films and Substrates by Automatic Bragg Angle Control , 1973 .
[53] H. Queisser,et al. Photoluminescence at Dislocations in GaAs , 1974 .
[54] M. S. Abrahams,et al. Interdependence of strain, precipitation, and dislocation formation in epitaxial Se‐doped GaAs , 1974 .
[55] H. Schade,et al. EFFICIENT ELECTRON EMISSION FROM GaAs–Al1−xGaxAs OPTOELECTRONIC COLD‐CATHODE STRUCTURES , 1971 .
[56] M. Ettenberg. Effects of dislocation density on the properties of liquid phase epitaxial GaAs , 1974 .
[57] N. Holonyak,et al. AlxGa1−xAs1−y′P y′–GaAs1−yPy HETEROSTRUCTURE LASER AND LAMP JUNCTIONS , 1970 .
[58] J. McVittie,et al. Single heterojunction Pb1−x Snx Te diode lasers , 1973 .
[59] Gregory H. Olsen,et al. Room‐temperature heterojunction laser diodes from vapor‐grown In1−xGaxP/GaAs structures , 1974 .
[60] H. Kressel. Gallium arsenide and (alga)as devices prepared by Liquid-Phase epitaxy (Review Article) , 1974 .
[61] D. G. Fisher,et al. The application of semiconductors with negative electron affinity surfaces to electron emission devices , 1974 .
[62] A. Fahrenbruch,et al. II‐VI photovoltaic heterojunctions for solar energy conversion , 1974 .
[63] H. M. Macksey,et al. Double Heterojunction AlGaAsP Quaternary Lasers , 1971 .
[64] P. Petroff,et al. Defect structure introduced during operation of heterojunction GaAs lasers , 1973 .
[65] O. Berolo,et al. Electroreflectance Spectra of AlxGa1−xAs Alloys , 1971 .
[66] M. Craford,et al. GaAs ‐ GaAsP Heterostructure Injection Lasers , 1971 .
[67] H. Kressel,et al. Influence of device fabrication parameters on gradual degradation of /AlGa/As cw laser diodes , 1974 .