A Complex Study of Stator Tooth-Coil Winding Thermal Models for PM Synchronous Motors Used in Electric Vehicle Applications

The operational reliability and high efficiency of modern electrical machines depend on the ability to transfer heat in the construction parts of the machine. Therefore, many authors study various thermal models and work on the development of effective heat dissipation. New insights and methods lead to improved techniques for the thermal design of electrical machines. This paper presents an experimentally validated thermal model of a permanent magnet synchronous motor (PMSM) with an improved slot winding model. It also deals with various approaches to homogenization and equivalent material properties of a tooth-coil winding sub-model. First, an algorithm for building a lumped-parameter thermal network (LPTN) of PMSM is described and its properties and problems are discussed. Subsequently, a sub-model of a slot with a winding based on the finite element method (FEM) is introduced. This sub-model is able to generate different conductor distributions based on probabilistic methods for a specified fill factor. This allows the verification of various homogenization approaches and at the same time it is a tool that automatically calculates thermal resistances for the LPTN.