Efficient explicit formulation for practical fuzzy structural analysis

This paper presents a practical approach based on High Dimensional Model Representation (HDMR) for analysing the response of structures with fuzzy parameters. The proposed methodology involves integrated finite element modelling, HDMR based response surface generation, and explicit fuzzy analysis procedures. The uncertainties in the material, geometric, loading and structural parameters are represented using fuzzy sets. To facilitate efficient computation, a HDMR based response surface generation is employed for the approximation of the fuzzy finite element response quantity.

[1]  Michael Hanss,et al.  The transformation method for the simulation and analysis of systems with uncertain parameters , 2002, Fuzzy Sets Syst..

[2]  Singiresu S. Rao,et al.  Nonlinear Membership Functions in Multiobjective Fuzzy Optimization of Mechanical and Structural Systems , 1992 .

[3]  M. F. Pellissetti,et al.  The effects of uncertainties in structural analysis , 2007 .

[4]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[5]  Wim Desmet,et al.  Application of fuzzy numerical techniques for product performance analysis in the conceptual and preliminary design stage , 2008 .

[6]  F. S. Wong,et al.  Fuzzy weighted averages and implementation of the extension principle , 1987 .

[7]  Tuan D. Pham,et al.  Fuzzy logic applied to numerical modelling of engineering problems , 1995 .

[8]  W. Dong,et al.  Vertex method for computing functions of fuzzy variables , 1987 .

[9]  Rajib Chowdhury,et al.  Probabilistic Analysis Using High Dimensional Model Representation and Fast Fourier Transform , 2008 .

[10]  G. Schuëller,et al.  Chair of Engineering Mechanics Ifm-publication 2-374 a Critical Appraisal of Reliability Estimation Procedures for High Dimensions , 2022 .

[11]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[12]  W. Graf,et al.  Fuzzy structural analysis using α-level optimization , 2000 .

[13]  W. Desmet,et al.  Assessment of uncertainty on structural dynamic responses with the short transformation method , 2005 .

[14]  Unyime O. Akpan,et al.  Fuzzy finite-element analysis of smart structures , 2000, Smart Structures.

[15]  R. Mullen,et al.  Uncertainty in mechanics problems-interval-based approach , 2001 .

[16]  H. Rabitz,et al.  High Dimensional Model Representations Generated from Low Dimensional Data Samples. I. mp-Cut-HDMR , 2001 .

[17]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[18]  Christian Soize,et al.  Nonparametric probabilistic approach of uncertainties for elliptic boundary value problem , 2009 .

[19]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[20]  Shuodao Wang,et al.  A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .

[21]  Christian Soize,et al.  Data and model uncertainties in complex aerospace engineering systems , 2005, Journal of Sound and Vibration.

[22]  F. Thouverez,et al.  ANALYSIS OF MECHANICAL SYSTEMS USING INTERVAL COMPUTATIONS APPLIED TO FINITE ELEMENT METHODS , 2001 .

[23]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[24]  H. Rabitz,et al.  High Dimensional Model Representations , 2001 .

[25]  Achintya Haldar,et al.  Reliability Assessment Using Stochastic Finite Element Analysis , 2000 .

[26]  Wim Desmet,et al.  Interval and fuzzy dynamic analysis of finite element models with superelements , 2007 .

[27]  I. Elishakoff,et al.  Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis , 1998 .

[28]  I. Elishakoff Essay on uncertainties in elastic and viscoelastic structures: From A. M. Freudenthal's criticisms to modern convex modeling , 1995 .

[29]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[30]  A. Meher Prasad,et al.  High dimensional model representation for piece‐wise continuous function approximation , 2007 .

[31]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[32]  Wim Desmet,et al.  A response surface based optimisation algorithm for the calculation of fuzzy envelope FRFs of models with uncertain properties , 2008 .

[33]  Robert L. Harvey,et al.  Neural network principles , 1994 .

[34]  Unyime O. Akpan,et al.  Practical fuzzy finite element analysis of structures , 2001 .

[35]  Li Chen,et al.  Fuzzy finite-element approach for the vibration analysis of imprecisely-defined systems , 1997 .

[36]  Singiresu S. Rao,et al.  Analysis of uncertain structural systems using interval analysis , 1997 .

[37]  Ilya M. Sobol,et al.  Theorems and examples on high dimensional model representation , 2003, Reliab. Eng. Syst. Saf..

[38]  David Moens,et al.  Non-probabilistic approaches for non-deterministic dynamic FE analysis of imprecisely defined structures , 2004 .

[39]  Ravi C. Penmetsa,et al.  Confidence bounds on component reliability in the presence of mixed uncertain variables , 2008 .