Computational Environment for Simulating Lightning Strokes in a Power Substation by Finite-Difference Time-Domain Method

A computational environment was developed for simulating transient electromagnetic phenomena involving complex structures. The system is based on the finite-difference time-domain method and includes tools such as a graphical user interface, a 3-D structure visualization module, thin-wire formulation, dielectrics and metallic blocks, perfectly matched layers, voltage and current sources, creation of field distribution images, voltage and current calculations, among others, all of them associated with automatic domain division for parallel (distributed) processing. In this paper, this system is used for obtaining full-wave solutions, for the first time, of lightning surge interactions with the structural part of a power substation. Parameters such as transitory step and touch voltages and potential distribution on ground surface are calculated for 1 kA peak for the injected surge current.