4-edge-coloring Graphs of Maximum Degree 3 in Linear Time

We present a linear time algorithm to properly color the edges of any graph of maximum degree 3 using 4 colors. Our algorithm uses a greedy approach and utilizes a new structure theorem for such graphs.

[1]  Dieter Jungnickel,et al.  Graphs, Networks, and Algorithms , 1980 .

[2]  Paul C. Kainen,et al.  The Four-Color Problem , 1977 .

[3]  Robert E. Tarjan,et al.  Dividing a Graph into Triconnected Components , 1973, SIAM J. Comput..

[4]  Leonid Levant,et al.  Induction in geometry , 1963 .

[5]  R. L. Brooks On colouring the nodes of a network , 1941, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[7]  E. L. Johnson A Proof of 4-Coloring the Edges of a Cubic Graph , 1966 .

[8]  Andrzej Ehrenfeucht,et al.  A new method of proving theorems on chromatic index , 1984, Discret. Math..

[9]  Harold N. Gabow,et al.  Path-based depth-first search for strong and biconnected components , 2000, Inf. Process. Lett..

[10]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[11]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[12]  Rossella Petreschi,et al.  Cubic graphs , 1995, CSUR.