Mathematical modeling of secondary lithium batteries

[1]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[2]  D. Linden Handbook Of Batteries , 2001 .

[3]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[4]  Ralph E. White,et al.  Comparison between Computer Simulations and Experimental Data for High-Rate Discharges of Plastic Lithium-Ion Batteries , 2000 .

[5]  Hans Petter Langtangen,et al.  Computational Partial Differential Equations - Numerical Methods and Diffpack Programming , 1999, Lecture Notes in Computational Science and Engineering.

[6]  Mukul Jain,et al.  Material Balance Modification in One-Dimensional Modeling of Porous Electrodes , 1999 .

[7]  Ralph B. Dinwiddie,et al.  Thermal properties of lithium-ion battery and components , 1999 .

[8]  H. Y. Cheh,et al.  Modeling of Cylindrical Alkaline Cells VIII. Solution of the Model by Exploiting Its Differential Algebraic Equation Structure , 1999 .

[9]  Ralph E. White,et al.  Influence of Some Design Variables on the Thermal Behavior of a Lithium‐Ion Cell , 1999 .

[10]  M. Verbrugge,et al.  Electrochemistry of Intercalation Materials Charge‐Transfer Reaction and Intercalate Diffusion in Porous Electrodes , 1999 .

[11]  Venkat R. Subramanian,et al.  Series Solutions for Boundary Value Problems using a Symbolic Successive Substitution Method , 1999 .

[12]  J. Dahn,et al.  Ab initio calculation of the lithium-tin voltage profile , 1998 .

[13]  M. Nagaoka,et al.  Lithium Diffusion in LixCoO2 Electrode Materials. , 1998 .

[14]  Ralph E. White,et al.  A Nonisothermal Nickel‐Hydrogen Cell Model , 1998 .

[15]  Chaoyang Wang,et al.  Micro‐Macroscopic Coupled Modeling of Batteries and Fuel Cells I. Model Development , 1998 .

[16]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[17]  P. Balbuena,et al.  Computational Studies of Lithium Intercalation in Model Graphite in the Presence of Tetrahydrofuran , 1998 .

[18]  J. Selman,et al.  Electrochemical‐Calorimetric Studies of Lithium‐Ion Cells , 1998 .

[19]  R. Spotnitz,et al.  A Mathematical Model for Intercalation Electrode Behavior I. Effect of Particle‐Size Distribution on Discharge Capacity , 1998 .

[20]  Robert M. Darling,et al.  Modeling side reactions in composite LiYMn2O4 electrodes , 1998 .

[21]  Robert M. Darling,et al.  Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes , 1997 .

[22]  I. Uchida,et al.  Microvoltammetric studies on single particles of battery active materials , 1997 .

[23]  Robert M. Darling,et al.  On the Short‐Time Behavior of Porous Intercalation Electrodes , 1997 .

[24]  J. Newman,et al.  Heat‐Generation Rate and General Energy Balance for Insertion Battery Systems , 1997 .

[25]  M. Doyle,et al.  Analysis of capacity–rate data for lithium batteries using simplified models of the discharge process , 1997 .

[26]  Ralph E. White,et al.  Governing Equations for Transport in Porous Electrodes , 1997 .

[27]  Aibing Yu,et al.  Modifying the linear packing model for predicting the porosity of nonspherical particle mixtures , 1996 .

[28]  Joel H. Ferziger,et al.  Introduction to Theoretical and Computational Fluid Dynamics , 1996 .

[29]  Ralph E. White,et al.  A Multiphase Mathematical Model of a Nickel/Hydrogen Cell , 1996 .

[30]  James W. Evans,et al.  Thermal Analysis of Lithium‐Ion Batteries , 1996 .

[31]  X. Jing,et al.  Ionic conductivity of polymer gel electrolytes based on poly(polyethylene glycol dimethacrylate) , 1996 .

[32]  T. Fuller,et al.  Influence of rib spacing in proton-exchange membrane electrode assemblies , 1996 .

[33]  S. Moon,et al.  Pyrolysis mechanism of silanes, difluorosilane, and their mixtures , 1996 .

[34]  Kas Hemmes,et al.  A Three-Phase Homogeneous Model for Porous Electrodes in Molten-Carbonate Fuel Cells , 1996 .

[35]  M. Verbrugge,et al.  Modeling Lithium Intercalation of Single‐Fiber Carbon Microelectrodes , 1996 .

[36]  Marc Doyle,et al.  The Use of Mathematical-Modeling in the Design of Lithium Polymer Battery Systems , 1995 .

[37]  J. Newman,et al.  Thermal Modeling of the Lithium/Polymer Battery .1. Discharge Behavior of a Single-Cell , 1995 .

[38]  J. Newman,et al.  Thermal modeling of the lithium/polymer battery. II: Temperature profiles in a cell stack , 1995 .

[39]  M. Verbrugge Three‐dimensionai temperature and current distribution in a battery module , 1995 .

[40]  Ralph E. White,et al.  Mathematical Modeling of a Nickel‐Cadmium Cell: Proton Diffusion in the Nickel Electrode , 1995 .

[41]  Marc Doyle,et al.  Modeling the performance of rechargeable lithium-based cells: design correlations for limiting cases , 1995 .

[42]  Jan N. Reimers,et al.  Can first principles calculations aid in lithium-ion battery design? , 1995 .

[43]  R. Blint Binding of Ether and Carbonyl Oxygens to Lithium Ion , 1995 .

[44]  James W. Evans,et al.  Three‐Dimensional Thermal Modeling of Lithium‐Polymer Batteries under Galvanostatic Discharge and Dynamic Power Profile , 1994 .

[45]  Jeff Dahn,et al.  Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries , 1994 .

[46]  M. Doyle,et al.  Relaxation Phenomena in Lithium‐Ion‐Insertion Cells , 1994 .

[47]  James W. Evans,et al.  Thermal analysis of lithium polymer electrolyte batteries by a two dimensional model—thermal behaviour and design optimization , 1994 .

[48]  Dean G. Duffy,et al.  On the numerical inversion of Laplace transforms: comparison of three new methods on characteristic problems from applications , 1993, TOMS.

[49]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[50]  Ralph E. White,et al.  A semi-analytical solution method for linear partial differential equations , 1992 .

[51]  D. Fan,et al.  Optimization and extension of pentadiagonal band(J) solver to multiregion systems containing interior boundaries , 1991 .

[52]  Ralph E. White,et al.  Modification of Newman's BAND(J) Subroutine to Multi‐Region Systems Containing Interior Boundaries: MBAND , 1991 .

[53]  Ralph E. White,et al.  A five-point finite difference method for solving parabolic partial differential equations , 1990 .

[54]  Ralph E. White,et al.  On the design of a simple solver for nonlinear two-point boundary value problems , 1990 .

[55]  T. I. Evans,et al.  A Comparison of Newman's Numerical Technique and deBoor's Algorithm , 1989 .

[56]  Ralph E. White,et al.  A Thermal Analysis of a Spirally Wound Battery Using a Simple Mathematical Model , 1989 .

[57]  Ralph E. White,et al.  A finite difference procedure for solving coupled, nonlinear elliptic partial differential equations , 1987 .

[58]  Keld West,et al.  The Composite Insertion Electrode Theoretical Part. Equilibrium in the Insertion Compound and Linear Potential Dependence , 1984 .

[59]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[60]  J. V. Zee,et al.  Application of Newman's Technique to Coupled, Nonlinear Partial Differential Equations , 1980 .

[61]  B. Davies,et al.  Numerical Inversion of the Laplace Transform: A Survey and Comparison of Methods , 1979 .

[62]  Keld West,et al.  Dynamic Aspects of Solid Solution Cathodes for Electrochemical Power Sources , 1979 .

[63]  J. M. Sullivan,et al.  Diffusion coefficients in propylene carbonate, dimethyl formanide, acetonitrile, and methyl formate , 1970 .

[64]  C. M. Shepherd Design of Primary and Secondary Cells II . An Equation Describing Battery Discharge , 1965 .

[65]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[66]  J. Westwater,et al.  The Mathematics of Diffusion. , 1957 .

[67]  H. Langtangen Computational Partial Differential Equations , 1999 .

[68]  Ping Yu,et al.  Determination of the Lithium Ion Diffusion Coefficient in Graphite , 1999 .

[69]  J. Donoso,et al.  Disorder model for specific conductivity of lithium perchlorate dissolved in poly(ethylene glycol-400) distearate , 1997 .

[70]  M. Verbrugge,et al.  Lithium intercalation of carbon-fiber microelectrodes , 1996 .

[71]  E. Christiansen,et al.  Handbook of Numerical Analysis , 1996 .

[72]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[73]  Ralph E. White,et al.  A Finite-Difference Method for Pseudo-Two-Dimensional Boundary Value Problems , 1994 .

[74]  Sam Qian,et al.  Wavelets and the numerical solution of boundary value problems , 1993 .

[75]  John Newman,et al.  Solving 1-D boundary-value problems with BandAid: A functional programming style and a complementary software tool , 1987 .

[76]  C. Vincent,et al.  Polymer electrolyte reviews. 1 , 1987 .

[77]  Christopher J. Van Wyk,et al.  Literate Programming , 1984, Comput. J..

[78]  Mark E. Davis,et al.  Numerical methods and modeling for chemical engineers , 1984 .

[79]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[80]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[81]  Cecil L. Smith,et al.  Formulation and optimization of mathematical models , 1970 .

[82]  H. A. Luther,et al.  Applied numerical methods , 1969 .

[83]  E. Cuthill,et al.  Numerical Methods for Nuclear Reactor Calculations , 1961 .

[84]  L. Rosenhead Conduction of Heat in Solids , 1947, Nature.