An optimal control method for time-dependent fluid-structure interaction problems

[1]  S. Manservisi,et al.  On the Optimal Control of Stationary Fluid–Structure Interaction Systems , 2020, Fluids.

[2]  T. Richter,et al.  A Newton multigrid framework for optimal control of fluid–structure interactions , 2020, Optimization and Engineering.

[3]  M. Walkley,et al.  An energy stable one-field monolithic arbitrary Lagrangian-Eulerian formulation for fluid-structure interaction , 2020, Journal of Fluids and Structures.

[4]  Thomas Wick,et al.  Optimization with nonstationary, nonlinear monolithic fluid‐structure interaction , 2019, International Journal for Numerical Methods in Engineering.

[5]  O. Burdakov,et al.  Stabilized Barzilai-Borwein Method , 2019, Journal of Computational Mathematics.

[6]  M. Walkley,et al.  Energy analysis for the one-field fictitious domain method for fluid-structure interactions , 2019, Applied Numerical Mathematics.

[7]  A Chierici,et al.  Distributed optimal control applied to Fluid Structure Interaction problems , 2019, Journal of Physics: Conference Series.

[8]  M. Walkley,et al.  A theoretical and experimental investigation of a family of immersed finite element methods , 2019, Journal of Fluids and Structures.

[9]  C. Dapogny,et al.  Geometrical shape optimization in fluid mechanics using FreeFem++ , 2018, Structural and Multidisciplinary Optimization.

[10]  Wulf G. Dettmer,et al.  A stabilised immersed framework on hierarchical b-spline grids for fluid-flexible structure interaction with solid–solid contact , 2018, Computer Methods in Applied Mechanics and Engineering.

[11]  Alexander Düster,et al.  Adjoint shape optimization for fluid–structure interaction of ducted flows , 2018 .

[12]  A. Woods,et al.  On the dynamics of a thin viscous film spreading between a permeable horizontal plate and an elastic sheet , 2018, Journal of Fluid Mechanics.

[13]  Sandro Manservisi,et al.  An optimal control method for fluid structure interaction systems via adjoint boundary pressure , 2017 .

[14]  Bret Stanford,et al.  Uncertainty Quantification in Aeroelasticity , 2017, Uncertainty Quantification in Computational Fluid Dynamics.

[15]  Peter K. Jimack,et al.  A One-Field Monolithic Fictitious Domain Method for Fluid-Structure Interactions , 2016, ArXiv.

[16]  K. Maute,et al.  An immersed boundary approach for shape and topology optimization of stationary fluid-structure interaction problems , 2016 .

[17]  Boris Vexler,et al.  Optimal Control of a Linear Unsteady Fluid–Structure Interaction Problem , 2016, J. Optim. Theory Appl..

[18]  Daniele Boffi,et al.  A fictitious domain approach with Lagrange multiplier for fluid-structure interactions , 2015, Numerische Mathematik.

[19]  E. Lauga The bearable gooeyness of swimming , 2014, Journal of Fluid Mechanics.

[20]  M. Hinze,et al.  An efficient line search technique and its application to adjoint topology optimisation , 2014 .

[21]  Eric Lauga,et al.  The other optimal Stokes drag profile , 2014, Journal of Fluid Mechanics.

[22]  Daniele Boffi,et al.  The Finite Element Immersed Boundary Method with Distributed Lagrange Multiplier , 2014, SIAM J. Numer. Anal..

[23]  Fotis Sotiropoulos,et al.  Coupled fluid-structure interaction simulation of floating offshore wind turbines and waves: a large eddy simulation approach , 2014 .

[24]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[25]  Matthias Heil,et al.  An efficient preconditioner for monolithically-coupled large-displacement fluid-structure interaction problems with pseudo-solid mesh updates , 2012, J. Comput. Phys..

[26]  Guirong Liu,et al.  Immersed smoothed finite element method for two dimensional fluid–structure interaction problems , 2012 .

[27]  Jamie Goggins,et al.  Numerical simulation of linear water waves and wave–structure interaction , 2012 .

[28]  K. Maute,et al.  Levelset based fluid topology optimization using the extended finite element method , 2012 .

[29]  A. Hazel,et al.  Fluid-Structure Interaction in Internal Physiological Flows , 2011 .

[30]  T. Wick,et al.  Finite elements for fluid–structure interaction in ALE and fully Eulerian coordinates , 2010 .

[31]  Yuri Bazilevs,et al.  A fully-coupled fluid-structure interaction simulation of cerebral aneurysms , 2010 .

[32]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[33]  Fredi Tröltzsch,et al.  Supplementary results on partial differential equations , 2010 .

[34]  Ming-Chen Hsu,et al.  Computational vascular fluid–structure interaction: methodology and application to cerebral aneurysms , 2010, Biomechanics and modeling in mechanobiology.

[35]  K. Bathe,et al.  Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction , 2009 .

[36]  Wei Bai,et al.  Fully nonlinear simulation of wave interaction with fixed and floating flared structures , 2009 .

[37]  Antoine Henrot,et al.  What is the Optimal Shape of a Pipe? , 2008, 0810.4322.

[38]  J. Boyle,et al.  Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches , 2008 .

[39]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[40]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[41]  W. Hager,et al.  The cyclic Barzilai-–Borwein method for unconstrained optimization , 2006 .

[42]  Jean-Paul Zolesio,et al.  Moving Shape Analysis and Control: Applications to Fluid Structure Interactions , 2006 .

[43]  Kazuo Kashiyama,et al.  ALE finite element method for FSI problems with free surface using mesh re-generation method based on background mesh , 2005 .

[44]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[45]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[46]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[47]  J. Grotberg,et al.  BIOFLUID MECHANICS IN FLEXIBLE TUBES , 2001 .

[48]  O. Pironneau,et al.  Applied Shape Optimization for Fluids , 2001 .

[49]  F. Baaijens A fictitious domain/mortar element method for fluid-structure interaction , 2001 .

[50]  L. S. Hou,et al.  Dynamics and Approximations of a Velocity Tracking Problem for the Navier--Stokes Flows with Piecewise Distributed Controls , 1997 .

[51]  R. Temam,et al.  On some control problems in fluid mechanics , 1990 .

[52]  Roland Glowinski,et al.  On the numerical computation of the minimum-drag profile in laminar flow , 1975, Journal of Fluid Mechanics.

[53]  O. Pironneau On optimum design in fluid mechanics , 1974, Journal of Fluid Mechanics.

[54]  O. Pironneau On optimum profiles in Stokes flow , 1973, Journal of Fluid Mechanics.

[55]  Frédéric Hecht,et al.  An energy stable monolithic Eulerian fluid‐structure finite element method , 2017 .

[56]  L. Zaniboni,et al.  ADJOINT OPTIMAL CONTROL PROBLEMS FOR FLUID-STRUCTURE INTERACTION SYSTEMS , 2016 .

[57]  M. Al-Baali,et al.  A Positive Barzilai–Borwein-Like Stepsize and an Extension for Symmetric Linear Systems , 2015 .

[58]  Joris Degroote,et al.  Partitioned solution of an unsteady adjoint for strongly coupled fluid-structure interactions and application to parameter identification of a one-dimensional problem , 2013 .

[59]  Stefan Turek,et al.  A Space-Time Multigrid Method for Optimal Flow Control , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.

[60]  J-F Gerbeau,et al.  External tissue support and fluid–structure simulation in blood flows , 2012, Biomechanics and modeling in mechanobiology.

[61]  S. Schmidt,et al.  Shape derivatives for general objective functions and the incompressible Navier-Stokes equations , 2010 .

[62]  S. Turek,et al.  Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow , 2006 .

[63]  Roger Fletcher,et al.  On the Barzilai-Borwein Method , 2005 .

[64]  Lars Davidson,et al.  LESFOIL : large eddy simulation of flow around a high lift airfoil : results of the project LESFOIL, supported by the European Union 1998-2001 , 2003 .

[65]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[66]  Louis B. Rall,et al.  Error in digital computation : proceedings of an Advanced Seminar conducted by the Mathematics Research Center, United States Army, at the University of Wisconsin, Madison, October 5-7, 1964 , 1965 .