A combinatorial Hopf algebra for nonlinear output feedback control systems

Abstract In this work a combinatorial description is provided of a Faa di Bruno type Hopf algebra which naturally appears in the context of Fliess operators in nonlinear feedback control theory. It is a connected graded commutative and non-cocommutative Hopf algebra defined on rooted circle trees. A cancellation free forest formula for its antipode is given.

[1]  C. Reutenauer Free Lie Algebras , 1993 .

[2]  Mark D. Haiman,et al.  Incidence algebra antipodes and lagrange inversion in one and several variables , 1989, J. Comb. Theory, Ser. A.

[3]  A. Kennedy,et al.  Simple approach to renormalization theory , 1982 .

[4]  Dominique Manchon,et al.  Hopf Algebras in Renormalisation , 2008 .

[5]  W. Steven Gray,et al.  A Faà di Bruno Hopf algebra for a group of Fliess operators with applications to feedback , 2011, IEEE Conference on Decision and Control and European Control Conference.

[6]  Loïc Foissy,et al.  The Hopf Algebra of Fliess Operators and Its Dual Pre-lie Algebra , 2013, 1304.1726.

[7]  M. Fliess Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives , 1983 .

[8]  Li Jin-q,et al.  Hopf algebras , 2019, Graduate Studies in Mathematics.

[9]  V. Smirnov Renormalization and Asymptotic Expansions , 1991 .

[10]  A. Isidori Nonlinear Control Systems , 1985 .

[11]  L. Foissy A pre-Lie algebra associated to a linear endomorphism and related algebraic structures , 2013, 1309.5318.

[12]  Hector Figueroa,et al.  Combinatorial Hopf algebras in quantum field theory. I , 2005 .

[13]  Joseph C. Várilly,et al.  Elements of Noncommutative Geometry , 2000 .

[14]  W. Steven Gray,et al.  Left inversion of analytic nonlinear SISO systems via formal power series methods , 2014, Autom..

[15]  Hillary Einziger Incidence Hopf algebras: Antipodes, forest formulas, and noncrossing partitions , 2010 .

[16]  Alain Connes,et al.  Hopf Algebras, Renormalization and Noncommutative Geometry , 1998 .

[17]  W. S. Gray,et al.  Formal Fliess Operators with Applications to Feedback Interconnections ∗ , 2008 .

[18]  W. Steven Gray,et al.  Faà di Bruno Hopf algebra of the output feedback group for multivariable Fliess operators , 2014, Syst. Control. Lett..

[19]  M. Fliess,et al.  Fonctionnelles causales non linaires et indtermines non commutatives , 1981 .

[20]  Yaqin Li,et al.  Generating Series for Interconnected Nonlinear Systems and the Formal Laplace-Borel Transform , 2004 .

[21]  Dominique Manchon,et al.  A short survey on pre-Lie algebras , 2011 .

[22]  W. Steven Gray,et al.  Generating Series for Interconnected Analytic Nonlinear Systems , 2005, SIAM J. Control. Optim..

[23]  W. Steven Gray,et al.  A Faà di Bruno Hopf algebra for analytic nonlinear feedback control systems , 2015 .

[24]  Alain Connes,et al.  Renormalization in Quantum Field Theory and the Riemann–Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem , 2000 .

[25]  W. Zimmermann Convergence of Bogoliubov's method of renormalization in momentum space , 1969 .