Quantifier elimination and decision procedures for valued fields

[1]  Thomas Becker,et al.  Real Closed Rings and Ordered Valuation Ring , 1983, Math. Log. Q..

[2]  S. Kochen,et al.  Diophantine Problems Over Local Fields: III. Decidable Fields , 1966 .

[3]  Multiply valued fields , 1982 .

[4]  Jan Denef,et al.  The rationality of the Poincaré series associated to thep-adic points on a variety , 1984 .

[5]  Lou van den Dries,et al.  Algebraic Theories with Definable Skolem Functions , 1984, J. Symb. Log..

[6]  S. Kochen,et al.  Diophantine Problems Over Local Fields I , 1965 .

[7]  Angus Macintyre,et al.  On definable subsets of p-adic fields , 1976, Journal of Symbolic Logic.

[8]  Paul C. Eklof,et al.  The elementary theory of abelian groups , 1972 .

[9]  Paul J. Cohen,et al.  Decision procedures for real and p‐adic fields , 1969 .

[10]  A. Nerode A decision method for $p$-adic integral zeros of diophantine equations , 1963 .

[11]  L. Lipshitz,et al.  Further remarks on the elementary theory of formal power series rings , 1980 .

[12]  L. Dries Quantifier elimination for linear formulas over ordered and valued fields , 1981 .

[13]  Serban A Basarab Some model theory for Henselian valued fields , 1978 .

[14]  Volker Weispfenning,et al.  On the elementary theory of Hensel fields , 1976 .

[15]  A. Macintyre,et al.  Elimination of Quantifiers in Algebraic Structures , 1983 .

[16]  Gregory L. Cherlin,et al.  Real closed rings II. model theory , 1983, Ann. Pure Appl. Log..

[17]  Serban S. Basarab A model-theoretic transfer theorem for henselian valued fields. , 1979 .