Intra- and inter-omic fusion of metabolic profiling data in a systems biology framework

The explosion of -omics technologies in the characterization and prediction of defined physiological or pathological states necessitates a parallel development in data integration and visualization tools in order to display and interpret vast amounts of data in an efficient manner. Here we summarize some of the key achievements in this area and compare the strengths and limitations of each method with respect to their use in representing biological processes in a systems biology environment.

[1]  Elaine Holmes,et al.  Metabolic Profiling of CSF: Evidence That Early Intervention May Impact on Disease Progression and Outcome in Schizophrenia , 2006, PLoS medicine.

[2]  Jingyuan Fu,et al.  System-wide molecular evidence for phenotypic buffering in Arabidopsis , 2009, Nature Genetics.

[3]  I. Wilson,et al.  Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. , 2007, Journal of proteome research.

[4]  E Holmes,et al.  Metabonomic characterization of genetic variations in toxicological and metabolic responses using probabilistic neural networks. , 2001, Chemical research in toxicology.

[5]  G. Church,et al.  Systematic determination of genetic network architecture , 1999, Nature Genetics.

[6]  Jeremiah Stamler,et al.  Detection of urinary drug metabolite (xenometabolome) signatures in molecular epidemiology studies via statistical total correlation (NMR) spectroscopy. , 2007, Analytical chemistry.

[7]  Johan Trygg,et al.  K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space , 2008, BMC Bioinformatics.

[8]  António S. Barros,et al.  (1)H NMR based metabonomics of human amniotic fluid for the metabolic characterization of fetus malformations. , 2009, Journal of proteome research.

[9]  E Holmes,et al.  Probing latent biomarker signatures and in vivo pathway activity in experimental disease states via statistical total correlation spectroscopy (STOCSY) of biofluids: application to HgCl2 toxicity. , 2006, Journal of proteome research.

[10]  I. Wilson,et al.  Understanding 'Global' Systems Biology: Metabonomics and the Continuum of Metabolism , 2003, Nature Reviews Drug Discovery.

[11]  R. Bibiloni,et al.  Panorganismal gut microbiome-host metabolic crosstalk. , 2009, Journal of proteome research.

[12]  Sebastiano Collino,et al.  Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects. , 2009, Journal of proteome research.

[13]  A. Smilde,et al.  Fusion of mass spectrometry-based metabolomics data. , 2005, Analytical chemistry.

[14]  John C. Lindon,et al.  NMR Spectroscopy of Biofluids , 1999 .

[15]  J. J. Jansen,et al.  ASCA: analysis of multivariate data obtained from an experimental design , 2005 .

[16]  J. Nap,et al.  Genetical genomics : the added value from segregation , 2001 .

[17]  Helena Idborg,et al.  Multivariate approaches for efficient detection of potential metabolites from liquid chromatography/mass spectrometry data. , 2004, Rapid communications in mass spectrometry : RCM.

[18]  Age K Smilde,et al.  Metabolomics data exploration guided by prior knowledge. , 2009, Analytica chimica acta.

[19]  Johan Trygg,et al.  O2‐PLS, a two‐block (X–Y) latent variable regression (LVR) method with an integral OSC filter , 2003 .

[20]  D. Kell,et al.  Metabolomics by numbers: acquiring and understanding global metabolite data. , 2004, Trends in biotechnology.

[21]  Anthony D. Walmsley,et al.  Quantitative iterative target transformation factor analysis , 2008 .

[22]  Rasmus Bro,et al.  PARAFASCA: ASCA combined with PARAFAC for the analysis of metabolic fingerprinting data , 2008 .

[23]  J. Lindon,et al.  Self-modeling curve resolution recovery of temporal metabolite signal modulation in NMR spectroscopic data sets: application to a life-long caloric restriction study in dogs. , 2008, Analytical chemistry.

[24]  Denny Sakkas,et al.  Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. , 2008, Fertility and sterility.

[25]  Thomas H Hutchinson,et al.  Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. , 2004, Aquatic toxicology.

[26]  E. A. Sylvestre,et al.  Self Modeling Curve Resolution , 1971 .

[27]  Z. Ramadan,et al.  Top-down systems biology integration of conditional prebiotic modulated transgenomic interactions in a humanized microbiome mouse model , 2008, Molecular systems biology.

[28]  E. Vaughan,et al.  1H NMR metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome , 2008, NMR in biomedicine.

[29]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Svante Wold,et al.  Hierarchical multiblock PLS and PC models for easier model interpretation and as an alternative to variable selection , 1996 .

[31]  R. Bro Review on Multiway Analysis in Chemistry—2000–2005 , 2006 .

[32]  D. Wishart,et al.  The human cerebrospinal fluid metabolome. , 2008, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[33]  N Salsabili,et al.  Concentration of blood and seminal plasma elements and their relationships with semen parameters in men with spinal cord injury , 2009, Andrologia.

[34]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[35]  Brian C Sweatman,et al.  Effects of feeding and body weight loss on the 1H-NMR-based urine metabolic profiles of male Wistar Han Rats: Implications for biomarker discovery , 2004, Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals.

[36]  Ian D. Wilson,et al.  1 H NMR and UPLC-MS E statistical heterospectroscopy: Characterization of drug metabolites (Xenometabolome) in epidemiological studies (Analytical Chemistry (2008) 80, (6835-6844)) , 2008 .

[37]  E. Ruppin,et al.  Predicting metabolic biomarkers of human inborn errors of metabolism , 2009, Molecular systems biology.

[38]  B. Hammock,et al.  Mass spectrometry-based metabolomics. , 2007, Mass spectrometry reviews.

[39]  David I. Ellis,et al.  Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. , 2006, The Analyst.

[40]  Elaine Holmes,et al.  Magic angle spinning NMR and 1H-31P heteronuclear statistical total correlation spectroscopy of intact human gut biopsies. , 2008, Analytical chemistry.

[41]  G. Hwang,et al.  Metabolic profiling of kidney and urine in rats with lithium-induced nephrogenic diabetes insipidus by (1)H-NMR-based metabonomics. , 2010, American journal of physiology. Renal physiology.

[42]  I. Wilson,et al.  Physiological variation in metabolic phenotyping and functional genomic studies: use of orthogonal signal correction and PLS‐DA , 2002, FEBS letters.

[43]  Timothy M. D. Ebbels,et al.  Bioinformatic methods in NMR-based metabolic profiling , 2009 .

[44]  David I. Ellis,et al.  Metabolomics: Current analytical platforms and methodologies , 2005 .

[45]  G. Siuzdak,et al.  Nonlinear data alignment for UPLC-MS and HPLC-MS based metabolomics: quantitative analysis of endogenous and exogenous metabolites in human serum. , 2006, Analytical chemistry.

[46]  Robert S Plumb,et al.  Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. , 2006, Analytical chemistry.

[47]  C Murali Krishna,et al.  Raman spectroscopy of breast tissues , 2008, Expert review of molecular diagnostics.

[48]  M. Rantalainen,et al.  Statistically integrated metabonomic-proteomic studies on a human prostate cancer xenograft model in mice. , 2006, Journal of proteome research.

[49]  J. Lindon,et al.  Metabonomics: a platform for studying drug toxicity and gene function , 2002, Nature Reviews Drug Discovery.

[50]  G. Church,et al.  Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae , 2001, Nature Genetics.

[51]  J. Macgregor,et al.  Analysis of multiblock and hierarchical PCA and PLS models , 1998 .

[52]  Oliver Fiehn,et al.  Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics. , 2003, Analytical chemistry.

[53]  Iven Van Mechelen,et al.  UvA-DARE ( Digital Academic Repository ) A structured overview of simultaneous component based data integration , 2009 .

[54]  T. Ideker,et al.  A new approach to decoding life: systems biology. , 2001, Annual review of genomics and human genetics.

[55]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Christian Gieger,et al.  A genome-wide perspective of genetic variation in human metabolism , 2010, Nature Genetics.

[57]  J. Lindon,et al.  The identification of novel biomarkers of renal toxicity using automatic data reduction techniques and PCA of proton NMR spectra of urine , 1998 .

[58]  Pieter M. Kroonenberg,et al.  Three-mode principal component analysis : theory and applications , 1983 .

[59]  J. Lindon,et al.  NMR‐based metabonomic approaches for evaluating physiological influences on biofluid composition , 2005, NMR in biomedicine.

[60]  Age K Smilde,et al.  Atherosclerosis and liver inflammation induced by increased dietary cholesterol intake: a combined transcriptomics and metabolomics analysis , 2007, Genome Biology.

[61]  E Holmes,et al.  Chemometric models for toxicity classification based on NMR spectra of biofluids. , 2000, Chemical research in toxicology.

[62]  J. Leeuw,et al.  Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .

[63]  Elaine Holmes,et al.  Heteronuclear 19F-1H statistical total correlation spectroscopy as a tool in drug metabolism: study of flucloxacillin biotransformation. , 2008, Analytical chemistry.

[64]  Matej Oresic,et al.  Methods for the differential integrative omic analysis of plasma from a transgenic disease animal model. , 2004, Omics : a journal of integrative biology.

[65]  Mariusz Kowalczyk,et al.  A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. , 2004, Analytical chemistry.

[66]  Christian Gieger,et al.  Genetics Meets Metabolomics: A Genome-Wide Association Study of Metabolite Profiles in Human Serum , 2008, PLoS genetics.

[67]  E. Ruppin,et al.  Multiple knockout analysis of genetic robustness in the yeast metabolic network , 2006, Nature Genetics.

[68]  E. Ibáñez,et al.  Metabolomics of transgenic maize combining Fourier transform-ion cyclotron resonance-mass spectrometry, capillary electrophoresis-mass spectrometry and pressurized liquid extraction. , 2009, Journal of chromatography. A.

[69]  Jost Klawitter,et al.  H-NMR-based metabolic signatures of mild and severe ischemia/reperfusion injury in rat kidney transplants. , 2005, Kidney international.

[70]  S. Stürzenbaum,et al.  'Systems toxicology' approach identifies coordinated metabolic responses to copper in a terrestrial non-model invertebrate, the earthworm Lumbricus rubellus , 2008, BMC Biology.

[71]  O. Fiehn Metabolomics – the link between genotypes and phenotypes , 2004, Plant Molecular Biology.

[72]  J. Utzinger,et al.  Metabolic profiling of a Schistosoma mansoni infection in mouse tissues using magic angle spinning-nuclear magnetic resonance spectroscopy. , 2009, International journal for parasitology.

[73]  Kazuki Saito,et al.  Potential of metabolomics as a functional genomics tool. , 2004, Trends in plant science.

[74]  S. Wold,et al.  A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: Theory and algorithm , 1994 .

[75]  Johan Lindberg,et al.  Correlation Network Analysis for Data Integration and Biomarker Selectionw , 2007 .

[76]  B. Palsson,et al.  The model organism as a system: integrating 'omics' data sets , 2006, Nature Reviews Molecular Cell Biology.

[77]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[78]  Jingyuan Fu,et al.  The genetics of plant metabolism , 2006, Nature Genetics.

[79]  J. Nicholson,et al.  Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat. , 2005, Chemical research in toxicology.

[80]  L. Ségalat,et al.  Metabotyping of Caenorhabditis elegans reveals latent phenotypes , 2007, Proceedings of the National Academy of Sciences.

[81]  Timothy M. D. Ebbels,et al.  Toxicity classification from metabonomic data using a density superposition approach: ‘CLOUDS’ , 2003 .

[82]  L. Corte,et al.  Development of a novel, FTIR (Fourier transform infrared spectroscopy) based, yeast bioassay for toxicity testing and stress response study. , 2010, Analytica chimica acta.

[83]  J. Lindon,et al.  Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. , 2008, Annual review of analytical chemistry.

[84]  Ian J. Brown,et al.  Human metabolic phenotype diversity and its association with diet and blood pressure , 2008, Nature.

[85]  T. Hankemeier,et al.  Microbial metabolomics with gas chromatography/mass spectrometry. , 2006, Analytical chemistry.

[86]  Elaine Holmes,et al.  Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes , 2008, Molecular systems biology.

[87]  T. Ebbels,et al.  Metabonomic investigations into the global biochemical sequelae of exposure to the pancreatic toxin 1‐cyano‐2‐hydroxy‐3‐butene in the rat , 2009, Magnetic resonance in chemistry : MRC.

[88]  M. Orešič,et al.  Pathways to the analysis of microarray data. , 2005, Trends in biotechnology.

[89]  J. Nicholson,et al.  NMR and pattern recognition studies on liver extracts and intact livers from rats treated with alpha-naphthylisothiocyanate. , 2002, Biochemical pharmacology.

[90]  Ian D Wilson,et al.  HPLC-MS-based methods for the study of metabonomics. , 2005, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[91]  S. Wold,et al.  Orthogonal projections to latent structures (O‐PLS) , 2002 .

[92]  R. Dixon,et al.  Plant metabolomics: large-scale phytochemistry in the functional genomics era. , 2003, Phytochemistry.

[93]  S. Wold,et al.  Some recent developments in PLS modeling , 2001 .

[94]  Kirill Veselkov,et al.  Species variation in the fecal metabolome gives insight into differential gastrointestinal function. , 2008, Journal of proteome research.

[95]  Christoph H Borchers,et al.  Metabolomics: towards understanding host-microbe interactions. , 2010, Future microbiology.

[96]  Susan M. Bridges,et al.  Comparing gene annotation enrichment tools for functional modeling of agricultural microarray data , 2009, BMC Bioinformatics.

[97]  J C Lindon,et al.  Application of pattern recognition methods to the analysis and classification of toxicological data derived from proton nuclear magnetic resonance spectroscopy of urine. , 1991, Molecular pharmacology.

[98]  J. Leeuw,et al.  Some additional results on principal components analysis of three-mode data by means of alternating least squares algorithms , 1987 .

[99]  Jérôme Euzenat,et al.  Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an Internet database , 1999, Nucleic Acids Res..

[100]  I. Wilson,et al.  High resolution "ultra performance" liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. , 2005, Journal of proteome research.

[101]  John C. Lindon,et al.  Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids , 2000 .

[102]  R. Henrion N-WAY PRINCIPAL COMPONENT ANALYSIS : THEORY, ALGORITHMS AND APPLICATIONS , 1994 .

[103]  J. W. Allwood,et al.  1H NMR, GC-EI-TOFMS, and data set correlation for fruit metabolomics: application to spatial metabolite analysis in melon. , 2009, Analytical chemistry.

[104]  Daniel Eriksson,et al.  Data integration in plant biology: the O2PLS method for combined modeling of transcript and metabolite data. , 2007, The Plant journal : for cell and molecular biology.

[105]  J. Lindon,et al.  'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. , 1999, Xenobiotica; the fate of foreign compounds in biological systems.

[106]  E. Fukusaki,et al.  Plant metabolomics: potential for practical operation. , 2005, Journal of bioscience and bioengineering.

[107]  W. Weckwerth Metabolomics in systems biology. , 2003, Annual review of plant biology.

[108]  S. Wold,et al.  The kernel algorithm for PLS , 1993 .

[109]  J C Lindon,et al.  Pattern recognition classification of the site of nephrotoxicity based on metabolic data derived from proton nuclear magnetic resonance spectra of urine. , 1994, Molecular pharmacology.

[110]  Sebastiano Collino,et al.  Multivariate modeling strategy for intercompartmental analysis of tissue and plasma 1H NMR spectrotypes. , 2009, Journal of proteome research.

[111]  Susumu Goto,et al.  Clofibrate-induced changes in the liver, heart, brain and white adipose lipid metabolome of Swiss-Webster mice , 2007, Metabolomics.

[112]  G. Siuzdak,et al.  From exogenous to endogenous: the inevitable imprint of mass spectrometry in metabolomics. , 2007, Journal of proteome research.

[113]  R. A. van den Berg,et al.  Centering, scaling, and transformations: improving the biological information content of metabolomics data , 2006, BMC Genomics.

[114]  M. Reily,et al.  Metabonomics: evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. , 2000, Toxicological sciences : an official journal of the Society of Toxicology.

[115]  Wojtek J. Krzanowski,et al.  Principles of multivariate analysis : a user's perspective. oxford , 1988 .

[116]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[117]  Michel Tenenhaus,et al.  Multiple factor analysis combined with PLS path modelling. Application to the analysis of relationships between physicochemical variables, sensory profiles and hedonic judgements , 2001 .

[118]  Matthias Reuss,et al.  Integrated Sampling Procedure for Metabolome Analysis , 2008, Biotechnology progress.

[119]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[120]  Jeremy K Nicholson,et al.  An integrated reverse functional genomic and metabolic approach to understanding orotic acid-induced fatty liver. , 2004, Physiological genomics.

[121]  John C Lindon,et al.  An integrated metabonomic approach to describe temporal metabolic disregulation induced in the rat by the model hepatotoxin allyl formate. , 2006, Journal of proteome research.

[122]  J. Utzinger,et al.  Bidirectional correlation of NMR and capillary electrophoresis fingerprints: a new approach to investigating Schistosoma mansoni infection in a mouse model. , 2010, Analytical chemistry.

[123]  Rasmus Bro,et al.  Generalized correlation loadings: Extending correlation loadings to congruence and to multi-way models , 2006 .

[124]  J. Macgregor,et al.  Monitoring batch processes using multiway principal component analysis , 1994 .

[125]  Henrik Antti,et al.  Spectral editing and pattern recognition methods applied to high-resolution magic-angle spinning 1H nuclear magnetic resonance spectroscopy of liver tissues. , 2003, Analytical biochemistry.

[126]  Rasmus Bro,et al.  Analysis of lipoproteins using 2D diffusion-edited NMR spectroscopy and multi-way chemometrics , 2005 .

[127]  C. Lambalk,et al.  Metabolomic profiling by near-infrared spectroscopy as a tool to assess embryo viability: a novel, non-invasive method for embryo selection. , 2008, Human reproduction.

[128]  Matej Oresic,et al.  Integrative biological analysis of the APOE*3-leiden transgenic mouse. , 2004, Omics : a journal of integrative biology.

[129]  P. Elliott,et al.  Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP Study. , 2006, Analytical chemistry.

[130]  J. Lindon,et al.  Metabonomics and its role in drug development and disease diagnosis , 2004, Expert review of molecular diagnostics.

[131]  Elaine Holmes,et al.  Metabonomic deconvolution of embedded toxicity: application to thioacetamide hepato- and nephrotoxicity. , 2005, Chemical research in toxicology.

[132]  A. Fernie,et al.  Gas chromatography mass spectrometry–based metabolite profiling in plants , 2006, Nature Protocols.

[133]  R. Albert Network Inference, Analysis, and Modeling in Systems Biology , 2007, The Plant Cell Online.

[134]  Sven P. Jacobsson,et al.  Evaluation of different techniques for data fusion of LC/MS and 1H-NMR , 2007 .

[135]  Hl Mao,et al.  Evaluation of filtering effects of orthogonal signal correction on metabonomic analysis of healthy human serum H-1 NMR spectra , 2007 .

[136]  D. Gauguier,et al.  Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. , 2005, Analytical chemistry.

[137]  Erik Johansson,et al.  Using chemometrics for navigating in the large data sets of genomics, proteomics, and metabonomics (gpm) , 2004, Analytical and bioanalytical chemistry.

[138]  T. Ebbels,et al.  Analytical reproducibility in (1)H NMR-based metabonomic urinalysis. , 2002, Chemical research in toxicology.

[139]  Donald G Robertson,et al.  Heteronuclear 1H-31P statistical total correlation NMR spectroscopy of intact liver for metabolic biomarker assignment: application to galactosamine-induced hepatotoxicity. , 2007, Analytical chemistry.

[140]  S. Wold,et al.  Orthogonal signal correction of near-infrared spectra , 1998 .

[141]  Xinjie Zhao,et al.  Strategy for metabonomics research based on high-performance liquid chromatography and liquid chromatography coupled with tandem mass spectrometry. , 2005, Journal of chromatography. A.

[142]  Ryutaro Hirose,et al.  Metabolic profiling of livers and blood from obese Zucker rats. , 2006, Journal of hepatology.

[143]  Robert S Plumb,et al.  1H NMR and UPLC-MS(E) statistical heterospectroscopy: characterization of drug metabolites (xenometabolome) in epidemiological studies. , 2008, Analytical chemistry.

[144]  Markus J. Herrgård,et al.  Network-based prediction of human tissue-specific metabolism , 2008, Nature Biotechnology.

[145]  Elaine Holmes,et al.  Prediction and classification of drug toxicity using probabilistic modeling of temporal metabolic data: the consortium on metabonomic toxicology screening approach. , 2007, Journal of proteome research.

[146]  A. K. Smilde,et al.  Dynamic metabolomic data analysis: a tutorial review , 2009, Metabolomics.

[147]  T. Ebbels,et al.  NMR-based metabolic profiling identifies biomarkers of liver regeneration following partial hepatectomy in the rat. , 2010, Journal of proteome research.

[148]  B. Kowalski,et al.  Multivariate curve resolution applied to spectral data from multiple runs of an industrial process , 1993 .

[149]  Ian D. Wilson,et al.  HIGH RESOLUTION PROTON MAGNETIC RESONANCE SPECTROSCOPY OF BIOLOGICAL FLUIDS , 1989 .

[150]  Dominique Gauguier,et al.  Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models , 2007, Nature Genetics.

[151]  Donald G Robertson,et al.  Metabonomics in toxicology: a review. , 2005, Toxicological sciences : an official journal of the Society of Toxicology.

[152]  R. Bro,et al.  Multiway chemometric analysis of the metabolic response to toxins monitored by NMR , 2005 .

[153]  R. Bro Multiway calibration. Multilinear PLS , 1996 .

[154]  I. Wilson,et al.  Cyclosporin A-induced changes in endogenous metabolites in rat urine: a metabonomic investigation using high field 1H NMR spectroscopy, HPLC-TOF/MS and chemometrics. , 2004, Journal of pharmaceutical and biomedical analysis.

[155]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[156]  Jérôme Pagès,et al.  Multiple factor analysis (AFMULT package) , 1994 .

[157]  Karl-Heinz Ott,et al.  Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts. , 2003, Phytochemistry.

[158]  Age K. Smilde,et al.  Real-life metabolomics data analysis : how to deal with complex data ? , 2010 .

[159]  Laurent Debrauwer,et al.  Selection of biomarkers by a multivariate statistical processing of composite metabonomic data sets using multiple factor analysis. , 2005, Journal of proteome research.

[160]  Julie A. Dickerson,et al.  VitisNet: “Omics” Integration through Grapevine Molecular Networks , 2009, PloS one.

[161]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[162]  R. Tauler Multivariate curve resolution applied to second order data , 1995 .

[163]  Bas Teusink,et al.  Multi‐way analysis of flux distributions across multiple conditions , 2009 .

[164]  Denny Sakkas,et al.  Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. , 2008, Fertility and sterility.

[165]  E Holmes,et al.  NMR and pattern recognition studies on the time-related metabolic effects of alpha-naphthylisothiocyanate on liver, urine, and plasma in the rat: an integrative metabonomic approach. , 2001, Chemical research in toxicology.

[166]  R. Stoughton,et al.  Genetics of gene expression surveyed in maize, mouse and man , 2003, Nature.

[167]  Johan Trygg,et al.  Integrated analysis of transcript, protein and metabolite data to study lignin biosynthesis in hybrid aspen. , 2009, Journal of proteome research.

[168]  A. Fernie,et al.  Metabolite profiling: from diagnostics to systems biology , 2004, Nature Reviews Molecular Cell Biology.

[169]  M. McCarthy,et al.  Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice , 2006, Proceedings of the National Academy of Sciences.

[170]  D. Schomburg,et al.  GC–MS libraries for the rapid identification of metabolites in complex biological samples , 2005, FEBS letters.

[171]  Luigi Ferrucci,et al.  Genome-Wide Association Study of Plasma Polyunsaturated Fatty Acids in the InCHIANTI Study , 2009, PLoS genetics.

[172]  Tom F. Wilderjans,et al.  Integrating functional genomics data using maximum likelihood based simultaneous component analysis , 2009, BMC Bioinformatics.

[173]  S. de Jong,et al.  A framework for sequential multiblock component methods , 2003 .

[174]  M. Tomita,et al.  Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. , 2003, Journal of proteome research.

[175]  Henrik Antti,et al.  Application of orthogonal signal correction to minimise the effects of physical and biological variation in high resolution 1H NMR spectra of biofluids. , 2002, The Analyst.

[176]  Aalim Weljie,et al.  Understanding the human salivary metabolome , 2009, NMR in biomedicine.

[177]  John C Lindon,et al.  Kinetic and J-resolved statistical total correlation NMR spectroscopy approaches to structural information recovery in complex reacting mixtures: application to acyl glucuronide intramolecular transacylation reactions. , 2008, Analytical chemistry.

[178]  S. Šašiċ,et al.  Two-Dimensional Correlation Analysis of Nuclear Magnetic Resonance Metabonomics Data , 2008, Applied spectroscopy.