Two‐Dimensional Programmable Manipulation of Magnetic Nanoparticles on‐Chip

A novel device is designed for on-chip selective trap and two-dimensional remote manipulation of single and multiple fluid-borne magnetic particles using field controlled magnetic domain walls in circular nanostructures. The combination of different ring-shaped nanostructures and field sequences allows for remote manipulation of magnetic particles with high-precision along any arbitrary pathway on a chip surface.

[1]  R. Bertacco,et al.  Domain wall displacement in Py square ring for single nanometric magnetic bead detection , 2008, 0809.4649.

[2]  Randall M. Erb,et al.  Magnetic field induced concentration gradients in magnetic nanoparticle suspensions: Theory and experiment , 2008 .

[3]  J. Ketterson,et al.  Analysis of ferromagnetic resonance response of square arrays of permalloy nanodots , 2007 .

[4]  Younan Xia,et al.  Monodispersed Colloidal Spheres: Old Materials with New Applications , 2000 .

[5]  M. Zahn,et al.  Enhanced fluid mixing and separation of magnetic bead agglomerates based on dipolar interaction in rotating magnetic fields , 2012 .

[6]  Paolo Vavassori,et al.  On‐Chip Manipulation of Protein‐Coated Magnetic Beads via Domain‐Wall Conduits , 2010, Advanced materials.

[7]  G. Zabow,et al.  Controlled transport of magnetic particles using soft magnetic patterns , 2008 .

[8]  M Donolato,et al.  Magnetic domain wall conduits for single cell applications. , 2011, Lab on a chip.

[9]  Mikkel Fougt Hansen,et al.  Microstripes for transport and separation of magnetic particles. , 2012, Biomicrofluidics.

[10]  R. Sooryakumar,et al.  Magnetic wire traps and programmable manipulation of biological cells. , 2009, Physical review letters.

[11]  Paolo Vavassori,et al.  Metastable states during magnetization reversal in square permalloy rings. , 2003 .

[12]  Nicole Pamme,et al.  Continuous flow separations in microfluidic devices. , 2007, Lab on a chip.

[13]  C. Dekker,et al.  Magnetic Forces and DNA Mechanics in Multiplexed Magnetic Tweezers , 2012, PloS one.

[14]  Geoffrey S. D. Beach,et al.  Dynamics of superparamagnetic microbead transport along magnetic nanotracks by magnetic domain walls , 2012 .

[15]  Mala L. Radhakrishnan,et al.  Manipulation of magnetic microbeads in suspension using micromagnetic systems fabricated with soft lithography , 2001 .

[16]  L. Horng,et al.  Study of Vortex Configuration and Switching Behavior in Submicro-Scaled Asymmetric Permalloy Ring , 2012, IEEE Transactions on Magnetics.

[17]  Alla Albrecht,et al.  Asymmetric Magnetization Reversal of Stripe‐Patterned Exchange Bias Layer Systems for Controlled Magnetic Particle Transport , 2011, Advanced materials.

[18]  L E Helseth,et al.  Domain wall tip for manipulation of magnetic particles. , 2003, Physical review letters.

[19]  Paolo Vavassori,et al.  Magnetic nanostructures for the manipulation of individual nanoscale particles in liquid environments (invited) , 2010 .

[20]  Arno Ehresmann,et al.  Controlled movement of superparamagnetic bead rows for microfluid mixing , 2012 .

[21]  A. Bleloch,et al.  Observation of a bi-domain state and nucleation free switching in mesoscopic ring magnets. , 2001, Physical review letters.

[22]  Daniel A. Koster,et al.  Antitumour drugs impede DNA uncoiling by topoisomerase I , 2007, Nature.

[23]  Paolo Vavassori,et al.  Single particle demultiplexer based on domain wall conduits , 2012 .

[24]  M. J. Kim,et al.  Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: A tool for fabrication of microbiorobots , 2010 .

[25]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[26]  Paolo Vavassori,et al.  Magneto-optical magnetometry of individual 30 nm cobalt nanowires grown by electron beam induced deposition , 2012 .

[27]  Peter Svedlindh,et al.  Programmable Motion and Separation of Single Magnetic Particles on Patterned Magnetic Surfaces , 2005 .

[28]  Michael G. Roper,et al.  Transport and separation of biomolecular cargo on paramagnetic colloidal particles in a magnetic ratchet. , 2008, The journal of physical chemistry. B.

[29]  Paolo Vavassori,et al.  Nanosized corners for trapping and detecting magnetic nanoparticles , 2009, Nanotechnology.

[30]  M. Kläui,et al.  Vortex circulation control in mesoscopic ring magnets , 2001 .

[31]  C L Chien,et al.  Magnetic bistability and controllable reversal of asymmetric ferromagnetic nanorings. , 2006, Physical review letters.

[32]  Paolo Vavassori,et al.  Flexible and stretchable polymers with embedded magnetic nanostructures. , 2013, Advanced materials.

[33]  Cheolgi Kim,et al.  Translocation of bio-functionalized magnetic beads using smart magnetophoresis. , 2010, Biosensors & bioelectronics.