Sparse Representation for Computer Vision and Pattern Recognition

Techniques from sparse signal representation are beginning to see significant impact in computer vision, often on nontraditional applications where the goal is not just to obtain a compact high-fidelity representation of the observed signal, but also to extract semantic information. The choice of dictionary plays a key role in bridging this gap: unconventional dictionaries consisting of, or learned from, the training samples themselves provide the key to obtaining state-of-the-art results and to attaching semantic meaning to sparse signal representations. Understanding the good performance of such unconventional dictionaries in turn demands new algorithmic and analytical techniques. This review paper highlights a few representative examples of how the interaction between sparse signal representation and computer vision can enrich both fields, and raises a number of open questions for further study.

[1]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Mark A Neifeld,et al.  Adaptive feature-specific imaging: a face recognition example. , 2008, Applied optics.

[3]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[4]  Karen O. Egiazarian,et al.  Color Image Denoising via Sparse 3D Collaborative Filtering with Grouping Constraint in Luminance-Chrominance Space , 2007, 2007 IEEE International Conference on Image Processing.

[5]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[6]  Jonathan J. Hull,et al.  A Database for Handwritten Text Recognition Research , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Hossein Mobahi,et al.  Toward a Practical Face Recognition System: Robust Alignment and Illumination by Sparse Representation , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Guillermo Sapiro,et al.  Discriminative k-metrics , 2009, ICML '09.

[9]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[10]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[11]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[12]  René Vidal,et al.  Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Yaakov Tsaig,et al.  Fast Solution of $\ell _{1}$ -Norm Minimization Problems When the Solution May Be Sparse , 2008, IEEE Transactions on Information Theory.

[14]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[15]  Hyun Sung Chang,et al.  Learning Compressed Sensing , 2007 .

[16]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[17]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Richard G. Baraniuk,et al.  A new compressive imaging camera architecture using optical-domain compression , 2006, Electronic Imaging.

[19]  Rama Chellappa,et al.  Enforcing integrability by error correction using ℓ1-minimization , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[21]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[22]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Michael Elad,et al.  Compression of facial images using the K-SVD algorithm , 2008, J. Vis. Commun. Image Represent..

[25]  Jongsun Kim,et al.  Effective representation using ICA for face recognition robust to local distortion and partial occlusion , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[27]  Kjersti Engan,et al.  Frame based signal compression using method of optimal directions (MOD) , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[28]  Jian-Feng Cai,et al.  Blind motion deblurring from a single image using sparse approximation , 2009, CVPR.

[29]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[30]  Hossein Mobahi,et al.  Face recognition with contiguous occlusion using markov random fields , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[31]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[32]  B. Cranen,et al.  Noise robust digit recognition using sparse representations , 2008 .

[33]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Gabriel Peyré,et al.  Sparse Modeling of Textures , 2009, Journal of Mathematical Imaging and Vision.

[35]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[36]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[37]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[38]  Rajat Raina,et al.  Self-taught learning: transfer learning from unlabeled data , 2007, ICML '07.

[39]  Guillermo Sapiro,et al.  Sparse Modeling with Universal Priors and Learned Incoherent Dictionaries(PREPRINT) , 2009 .

[40]  Ehsan Elhamifar,et al.  Sparse subspace clustering , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Hao Zhang,et al.  Expression-insensitive 3D face recognition using sparse representation , 2009, CVPR.

[42]  YanShuicheng,et al.  Learning with l1-graph for image analysis , 2010 .

[43]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[44]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[45]  Lei Zhang,et al.  Multi-label sparse coding for automatic image annotation , 2009, CVPR.

[46]  Mário A. T. Figueiredo Adaptive Sparseness Using Jeffreys Prior , 2001, NIPS.

[47]  Thomas S. Huang,et al.  Robust estimation of foreground in surveillance videos by sparse error estimation , 2008, 2008 19th International Conference on Pattern Recognition.

[48]  Trevor Darrell,et al.  Transfer learning for image classification with sparse prototype representations , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Fang-Xiang Wu,et al.  Sparse Representation for Classification of Tumors Using Gene Expression Data , 2009, Journal of biomedicine & biotechnology.

[50]  Florian Steinke,et al.  Bayesian Inference and Optimal Design in the Sparse Linear Model , 2007, AISTATS.

[51]  Suyash P. Awate,et al.  Unsupervised, information-theoretic, adaptive image filtering for image restoration , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Stan Z. Li,et al.  Learning spatially localized, parts-based representation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[53]  John Wright,et al.  Dense Error Correction Via $\ell^1$-Minimization , 2010, IEEE Transactions on Information Theory.

[54]  E.J. Candes Compressive Sampling , 2022 .

[55]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[56]  Allen Y. Yang,et al.  Distributed recognition of human actions using wearable motion sensor networks , 2009, J. Ambient Intell. Smart Environ..

[57]  Volkan Cevher,et al.  Compressive Sensing for Background Subtraction , 2008, ECCV.

[58]  David B. Dunson,et al.  Multi-task compressive sensing with Dirichlet process priors , 2008, ICML '08.

[59]  Guillermo Sapiro,et al.  Learning to Sense Sparse Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization , 2009, IEEE Transactions on Image Processing.

[60]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[61]  Michael Elad,et al.  Optimized Projections for Compressed Sensing , 2007, IEEE Transactions on Signal Processing.

[62]  I. Jolliffe Principal Component Analysis , 2002 .

[63]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[64]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[65]  Michael Elad,et al.  Automatic parameter setting for iterative shrinkage methods , 2008, 2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel.

[66]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[67]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[68]  Shuicheng Yan,et al.  Learning With $\ell ^{1}$-Graph for Image Analysis , 2010, IEEE Transactions on Image Processing.

[69]  Pierre Vandergheynst,et al.  Dictionary Preconditioning for Greedy Algorithms , 2008, IEEE Transactions on Signal Processing.

[70]  Rama Chellappa,et al.  Enforcing integrability by error correction using l1-minimization , 2009, CVPR.

[71]  Bernt Schiele,et al.  Analyzing appearance and contour based methods for object categorization , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[72]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[73]  Shuicheng Yan,et al.  Semi-supervised Learning by Sparse Representation , 2009, SDM.

[74]  David L. Donoho,et al.  Neighborly Polytopes And Sparse Solution Of Underdetermined Linear Equations , 2005 .

[75]  Lawrence Carin,et al.  Sparse multinomial logistic regression: fast algorithms and generalization bounds , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[76]  Rong Jin,et al.  Distance Metric Learning: A Comprehensive Survey , 2006 .

[77]  E. Candes,et al.  11-magic : Recovery of sparse signals via convex programming , 2005 .

[78]  Subhransu Maji,et al.  Distributed compression and fusion of nonnegative sparse signals for multiple-view object recognition , 2009, 2009 12th International Conference on Information Fusion.

[79]  Guillermo Sapiro,et al.  Discriminative learned dictionaries for local image analysis , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[80]  Mark A Neifeld,et al.  Random projections based feature-specific structured imaging. , 2008, Optics express.

[81]  Baoxin Li,et al.  A compressive sensing approach for expression-invariant face recognition , 2009, CVPR.

[82]  Martial Hebert,et al.  Discriminative Sparse Image Models for Class-Specific Edge Detection and Image Interpretation , 2008, ECCV.

[83]  MaYi,et al.  Dense error correction via l1-minimization , 2010 .

[84]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[85]  Mark A Neifeld,et al.  Feature-specific structured imaging. , 2006, Applied optics.

[86]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[87]  Haibin Ling,et al.  Sparse representation of cast shadows via ℓ1-regularized least squares , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[88]  Michael Elad,et al.  Learning Multiscale Sparse Representations for Image and Video Restoration , 2007, Multiscale Model. Simul..

[89]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[90]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[91]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[92]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[93]  Guillermo Sapiro,et al.  Sparse representations for image classification: learning discriminative and reconstructive non-parametric dictionaries , 2008 .

[94]  Guillermo Sapiro,et al.  Non-local sparse models for image restoration , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[95]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.

[96]  Guillermo Sapiro,et al.  Supervised Dictionary Learning , 2008, NIPS.

[97]  Stephen Lin,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[98]  Zihan Zhou,et al.  Towards a practical face recognition system: Robust registration and illumination by sparse representation , 2009, CVPR.

[99]  Bert Cranen,et al.  Using sparse representations for missing data imputation in noise robust speech recognition , 2008, 2008 16th European Signal Processing Conference.

[100]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.