On Retrieving Moving Objects Gathering Patterns from Trajectory Data via Spatio-temporal Graph

Moving object gathering pattern represents a group event or incident that involves congregation of moving objects, enabling the prediction of anomalies in traffic system. However, effectively and efficiently discovering the specific gathering pattern turns to be a remaining challenging issue since the large number of moving objects will generate high volume of trajectory data. In order to address this issue, we propose a moving object gathering pattern retrieving method that aims to support the retrieving of gathering patterns by using spatio-temporal graph. In this method, firstly we use a density based clustering algorithm (DBScan) to collect the moving object clusters. Then, we maintain a spatio-temporal graph rather than storing the spatial coordinates to obtain the spatio-temporal changes in real time. Finally, a gathering retrieving algorithm is developed by searching the maximal complete graphs which meet the spatio-temporal constraints. To the best of our knowledge, effectiveness and efficiency of the proposed methods are outperformed other methods on both real and large trajectory data.

[1]  Xing Xie,et al.  T-drive: driving directions based on taxi trajectories , 2010, GIS '10.

[2]  Gennady L. Andrienko,et al.  Spatial Generalization and Aggregation of Massive Movement Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[3]  Dieter Pfoser,et al.  Indexing of network constrained moving objects , 2003, GIS '03.

[4]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[5]  Frédéric Cazals,et al.  A note on the problem of reporting maximal cliques , 2008, Theor. Comput. Sci..

[6]  Panos Kalnis,et al.  On Discovering Moving Clusters in Spatio-temporal Data , 2005, SSTD.

[7]  Ralf Hartmut Güting,et al.  Indexing the Trajectories of Moving Objects in Networks* , 2004, GeoInformatica.

[8]  Jiawei Han,et al.  Swarm: Mining Relaxed Temporal Moving Object Clusters , 2010, Proc. VLDB Endow..

[9]  Natalia Adrienko,et al.  Spatial Generalization and Aggregation of Massive Movement Data , 2011 .

[10]  Elias Frentzos,et al.  Indexing Objects Moving on Fixed Networks , 2003, SSTD.

[11]  Christophe Claramunt,et al.  A Graph Model for Spatio-temporal Evolution , 2010, J. Univers. Comput. Sci..

[12]  Christian S. Jensen,et al.  Trajectory Pattern Mining , 2011, Computing with Spatial Trajectories.

[13]  Christian S. Jensen,et al.  Indexing the positions of continuously moving objects , 2000, SIGMOD '00.

[14]  Joachim Gudmundsson,et al.  Computing longest duration flocks in trajectory data , 2006, GIS '06.

[15]  Bart Kuijpers,et al.  Modeling uncertainty of moving objects on road networks via space–time prisms , 2009, Int. J. Geogr. Inf. Sci..

[16]  Nicholas Jing Yuan,et al.  On discovery of gathering patterns from trajectories , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[17]  Ralf Hartmut Güting,et al.  Modeling and querying moving objects in networks , 2006, The VLDB Journal.

[18]  Farnoush Banaei Kashani,et al.  Towards modeling the traffic data on road networks , 2009, IWCTS '09.

[19]  Diansheng Guo,et al.  Flow Mapping and Multivariate Visualization of Large Spatial Interaction Data , 2009, IEEE Transactions on Visualization and Computer Graphics.

[20]  Patrick Laube,et al.  Analyzing Relative Motion within Groups of Trackable Moving Point Objects , 2002, GIScience.

[21]  Myra Spiliopoulou,et al.  MONIC: modeling and monitoring cluster transitions , 2006, KDD '06.

[22]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[23]  Huan Wang,et al.  Online clustering for trajectory data stream of moving objects , 2013, Comput. Sci. Inf. Syst..

[24]  Joachim Gudmundsson,et al.  Detecting Commuting Patterns by Clustering Subtrajectories , 2011, Int. J. Comput. Geom. Appl..

[25]  Christophe Claramunt,et al.  Modeling consistency of spatio-temporal graphs , 2013, Data Knowl. Eng..