A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module

Abstract In order to carry out the evaluation, control and maximum power point tracking on photovoltaic (PV) systems, accurate and reliable model parameter identification of PV cell and module is always desired. In this study, a performance-guided JAYA (PGJAYA) algorithm is proposed for extracting parameters of different PV models. In proposed PGJAYA algorithm, the individual performance in the whole population is quantified through probability. Then, based on probability, each individual can self-adaptively select different evolution strategies designed for balancing exploration and exploitation abilities to conduct the searching process. Meanwhile, the quantified performance is employed to select the exemplar to construct the promising searching direction. In addition, a self-adaptive chaotic perturbation mechanism is introduced around the current best solution to explore more better solution for replacing the worst one, thus improving the quality of whole population. The parameters estimation performance of PGJAYA is evaluated through three widely used standard datasets of different PV models including single diode, double diode, and PV module. Comparative and statistical results demonstrate that PGJAYA has a superior performance as it always obtains the most accurate parameters with strong robustness among all compared algorithms. Furthermore, the tests based on experimental data from the data sheet of different types of PV modules suggest that the proposed algorithm can achieve superior results at different irradiance and temperature. Based on these superiorities, it is concluded that PGJAYA is a promising parameter identification method for PV cell and module model.

[1]  Wenyin Gong,et al.  DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization , 2010, Soft Comput..

[2]  D. Maskell,et al.  Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm , 2013 .

[3]  Haibin Yu,et al.  Fully Distributed Hierarchical Control of Parallel Grid-Supporting Inverters in Islanded AC Microgrids , 2018, IEEE Transactions on Industrial Informatics.

[4]  Yudong Zhang,et al.  Intelligent facial emotion recognition based on stationary wavelet entropy and Jaya algorithm , 2018, Neurocomputing.

[5]  Yuqing He,et al.  Parameter extraction of solar cell models using mutative-scale parallel chaos optimization algorithm , 2014 .

[6]  Saad Mekhilef,et al.  Solar cell parameters extraction based on single and double-diode models: A review , 2016 .

[7]  Gonzalo Pajares,et al.  Parameter identification of solar cells using artificial bee colony optimization , 2014 .

[8]  Dalia Yousri,et al.  Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm , 2016 .

[9]  Kok Soon Tey,et al.  Forecasting of photovoltaic power generation and model optimization: A review , 2018 .

[10]  Huaglory Tianfield,et al.  Biogeography-based learning particle swarm optimization , 2016, Soft Computing.

[11]  N. Rajasekar,et al.  A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation , 2017 .

[12]  Kang Li,et al.  An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models , 2014 .

[13]  R. Venkata Rao,et al.  Multi-team perturbation guiding Jaya algorithm for optimization of wind farm layout , 2018, Appl. Soft Comput..

[14]  Y.P. Li,et al.  A flexible-possibilistic stochastic programming method for planning municipal-scale energy system through introducing renewable energies and electric vehicles , 2019, Journal of Cleaner Production.

[15]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[16]  Bin Xu,et al.  Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation , 2018 .

[17]  Chao Huang,et al.  A GPU-accelerated parallel Jaya algorithm for efficiently estimating Li-ion battery model parameters , 2018, Appl. Soft Comput..

[18]  A. R. Jordehi Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules , 2018 .

[19]  Xin-She Yang,et al.  New directional bat algorithm for continuous optimization problems , 2017, Expert Syst. Appl..

[20]  Hongxing Yang,et al.  Integrated energy performance optimization of a passively designed high-rise residential building in different climatic zones of China , 2018 .

[21]  Jinyue Yan,et al.  Optimization and assessment of floating and floating-tracking PV systems integrated in on- and off-grid hybrid energy systems , 2019, Solar Energy.

[22]  A. Sellami,et al.  Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction , 2010 .

[23]  Xu Chen,et al.  Parameters identification of photovoltaic models using an improved JAYA optimization algorithm , 2017 .

[24]  Xin Wang,et al.  Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization , 2017 .

[25]  MengChu Zhou,et al.  Flexible Job-Shop Rescheduling for New Job Insertion by Using Discrete Jaya Algorithm , 2019, IEEE Transactions on Cybernetics.

[26]  Heng Wang,et al.  Parameter extraction of solar cell models using improved shuffled complex evolution algorithm , 2018, Energy Conversion and Management.

[27]  N. Rajasekar,et al.  Bacterial Foraging Algorithm based solar PV parameter estimation , 2013 .

[28]  R. V. Rao,et al.  Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm , 2017 .

[29]  Q. Niu,et al.  A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells , 2014 .

[30]  Yong Wang,et al.  Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm , 2017 .

[31]  Ahmed Fathy,et al.  Parameter estimation of photovoltaic system using imperialist competitive algorithm , 2017 .

[32]  Xu Zhao,et al.  Estimates of energy consumption in China using a self-adaptive multi-verse optimizer-based support vector machine with rolling cross-validation , 2018, Energy.

[33]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[34]  Wenyin Gong,et al.  Parameter extraction of solar cell models using repaired adaptive differential evolution , 2013 .

[35]  Norman Mariun,et al.  Optimal Power Flow Using the Jaya Algorithm , 2016 .

[36]  Sang-Bong Rhee,et al.  A Novel Multi-Population Based Chaotic JAYA Algorithm with Application in Solving Economic Load Dispatch Problems , 2018, Energies.

[37]  Bijaya K. Panigrahi,et al.  Rapid MPPT for Uniformly and Partial Shaded PV System by Using JayaDE Algorithm in Highly Fluctuating Atmospheric Conditions , 2017, IEEE Transactions on Industrial Informatics.

[38]  Anis Sakly,et al.  Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction , 2018, Energy Conversion and Management.

[39]  Huaglory Tianfield,et al.  Biogeography-based optimization with covariance matrix based migration , 2016, Appl. Soft Comput..

[40]  Vineet Kumar,et al.  PV cell and module efficient parameters estimation using Evaporation Rate based Water Cycle Algorithm , 2017, Swarm Evol. Comput..

[41]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[42]  Sílvio Mariano,et al.  A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization , 2018 .

[43]  Norman Mariun,et al.  A novel quasi-oppositional modified Jaya algorithm for multi-objective optimal power flow solution , 2018, Appl. Soft Comput..

[44]  Mehdi Bigdeli,et al.  Very accurate parameter estimation of single- and double-diode solar cell models using a modified artificial bee colony algorithm , 2016 .

[45]  Jieming Ma,et al.  Comparative performance on photovoltaic model parameter identification via bio-inspired algorithms , 2016 .

[46]  Andreas Sumper,et al.  Optimization problem for meeting distribution system operator requests in local flexibility markets with distributed energy resources , 2018 .

[47]  Xin Wang,et al.  An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems , 2016, J. Intell. Manuf..

[48]  A. Ortiz-Conde,et al.  New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics , 2006 .

[49]  Dalia Yousri,et al.  Flower Pollination Algorithm based solar PV parameter estimation , 2015 .

[50]  Dhiaa Halboot Muhsen,et al.  Parameters extraction of double diode photovoltaic module’s model based on hybrid evolutionary algorithm , 2015 .

[51]  Shengxi Zhou,et al.  Dual serial vortex-induced energy harvesting system for enhanced energy harvesting , 2018, AIP Advances.

[52]  R. Venkata Rao,et al.  Constrained economic optimization of shell-and-tube heat exchangers using elitist-Jaya algorithm , 2017 .

[53]  María José del Jesús,et al.  KEEL: a software tool to assess evolutionary algorithms for data mining problems , 2008, Soft Comput..

[54]  Diego Oliva,et al.  Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm , 2017 .

[55]  Henry Shu-Hung Chung,et al.  A Prediction Model-Guided Jaya Algorithm for the PV System Maximum Power Point Tracking , 2018, IEEE Transactions on Sustainable Energy.

[56]  Wenxiang Zhao,et al.  Parameters identification of solar cell models using generalized oppositional teaching learning based optimization , 2016 .

[57]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[58]  R. Rao Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems , 2016 .

[59]  Zhong-qiang Wu,et al.  Parameter identification of photovoltaic cell model based on improved ant lion optimizer , 2017 .