Tetracarboxylic acid transporter regulates growth, conidiation, and carbon utilization in Metarhizium acridum

[1]  Yuxian Xia,et al.  Transcription Factor Mavib-1 Negatively Regulates Conidiation by Affecting Utilization of Carbon and Nitrogen Source in Metarhizium acridum , 2022, Journal of fungi.

[2]  Zhengqiang Miao,et al.  Carbon Catabolite Repression Governs Diverse Physiological Processes and Development in Aspergillus nidulans , 2022, mBio.

[3]  W. Achouak,et al.  Implications of carbon catabolite repression for plant–microbe interactions , 2021, Plant communications.

[4]  Yuxian Xia,et al.  MaNmrA, a Negative Transcription Regulator in Nitrogen Catabolite Repression Pathway, Contributes to Nutrient Utilization, Stress Resistance, and Virulence in Entomopathogenic Fungus Metarhizium acridum , 2021, Biology.

[5]  G. Unden,et al.  C4-dicarboxylate metabolons: Interaction of C4-dicarboxylate transporters of Escherichia coli with cytosolic enzymes and regulators , 2021, bioRxiv.

[6]  N. Zhang,et al.  Metarhizium anisopliae CQMa128 regulates antioxidant/detoxification enzymes and exerts acaricidal activity against Psoroptes ovis var. cuniculi in rabbits: A preliminary study. , 2020, Veterinary parasitology.

[7]  Vratislav Šťovíček,et al.  Engineering energetically efficient transport of dicarboxylic acids in yeast Saccharomyces cerevisiae , 2019, Proceedings of the National Academy of Sciences.

[8]  Yuxian Xia,et al.  The MaCreA Gene Regulates Normal Conidiation and Microcycle Conidiation in Metarhizium acridum , 2019, Front. Microbiol..

[9]  Yuxian Xia,et al.  Members of chitin synthase family in Metarhizium acridum differentially affect fungal growth, stress tolerances, cell wall integrity and virulence , 2019, PLoS pathogens.

[10]  Jinfeng Yu,et al.  Thioredoxin Reductase Is Involved in Development and Pathogenicity in Fusarium graminearum , 2019, Front. Microbiol..

[11]  B. Ye,et al.  GlnR-Mediated Regulation of Short-Chain Fatty Acid Assimilation in Mycobacterium smegmatis , 2018, Front. Microbiol..

[12]  L. Ries,et al.  Overview of carbon and nitrogen catabolite metabolism in the virulence of human pathogenic fungi , 2018, Molecular microbiology.

[13]  A. Calenda,et al.  Microbial antioxidant defense enzymes. , 2017, Microbial pathogenesis.

[14]  Lei Yang,et al.  Overexpression of a C4-dicarboxylate transporter is the key for rerouting citric acid to C4-dicarboxylic acid production in Aspergillus carbonarius , 2017, Microbial Cell Factories.

[15]  Liming Liu,et al.  Engineering rTCA pathway and C4-dicarboxylate transporter for l-malic acid production , 2017, Applied Microbiology and Biotechnology.

[16]  M. Wösten,et al.  Function and Regulation of the C4-Dicarboxylate Transporters in Campylobacter jejuni , 2017, Front. Microbiol..

[17]  Wilfred M Anjago,et al.  WD40-repeat protein MoCreC is essential for carbon repression and is involved in conidiation, growth and pathogenicity of Magnaporthe oryzae , 2017, Current Genetics.

[18]  R. Jog,et al.  Organic acid mediated repression of sugar utilization in rhizobia. , 2016, Microbiological research.

[19]  Yuxian Xia,et al.  Transcriptional analysis of the conidiation pattern shift of the entomopathogenic fungus Metarhizium acridum in response to different nutrients , 2016, BMC Genomics.

[20]  R. Goacher,et al.  Comparative analysis of lignin peroxidase and manganese peroxidase activity on coniferous and deciduous wood using ToF-SIMS , 2016, Applied Microbiology and Biotechnology.

[21]  Yuxian Xia,et al.  MaSnf1, a sucrose non-fermenting protein kinase gene, is involved in carbon source utilization, stress tolerance, and virulence in Metarhizium acridum , 2014, Applied Microbiology and Biotechnology.

[22]  Y. Pei,et al.  Ablation of the creA regulator results in amino acid toxicity, temperature sensitivity, pleiotropic effects on cellular development and loss of virulence in the filamentous fungus Beauveria bassiana. , 2014, Environmental microbiology.

[23]  R. Guthke,et al.  Regulatory Networks Controlling Nitrogen Sensing and Uptake in Candida albicans , 2014, PloS one.

[24]  Yuxian Xia,et al.  The tetraspanin gene MaPls1 contributes to virulence by affecting germination, appressorial function and enzymes for cuticle degradation in the entomopathogenic fungus, Metarhizium acridum. , 2013, Environmental microbiology.

[25]  C. Obinger,et al.  Eukaryotic extracellular catalase–peroxidase from Magnaporthe grisea – Biophysical/chemical characterization of the first representative from a novel phytopathogenic KatG group , 2012, Biochimie.

[26]  S. Ying,et al.  Additive Contributions of Two Manganese-Cored Superoxide Dismutases (MnSODs) to Antioxidation, UV Tolerance and Virulence of Beauveria bassiana , 2012, PloS one.

[27]  A. Giacomini,et al.  A sulphite-inducible form of the sulphite efflux gene SSU1 in a Saccharomyces cerevisiae wine yeast. , 2010, Microbiology.

[28]  Shizhu Zhang,et al.  Microcycle conidiation and the conidial properties in the entomopathogenic fungus Metarhizium acridum on agar medium , 2010 .

[29]  D. Zeng,et al.  Field trials of Metarhizium anisopliae var. acridum (Ascomycota: Hypocreales) against oriental migratory locusts, Locusta migratoria manilensis (Meyen) in Northern China , 2008 .

[30]  B. Görke,et al.  Carbon catabolite repression in bacteria: many ways to make the most out of nutrients , 2008, Nature Reviews Microbiology.

[31]  M. Inui,et al.  Identification of a Gene Encoding a Transporter Essential for Utilization of C4 Dicarboxylates in Corynebacterium glutamicum , 2008, Applied and Environmental Microbiology.

[32]  Christoph Wittmann,et al.  Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function. , 2007, Journal of biotechnology.

[33]  R. Simmons,et al.  Microcycle conidiation and medusa head conidiophores of aspergilli on indoor construction materials and air filters from hospitals. , 2007, Mycologia.

[34]  Young Cheol Kim,et al.  The dctA gene of Pseudomonas chlororaphis O6 is under RpoN control and is required for effective root colonization and induction of systemic resistance. , 2006, FEMS microbiology letters.

[35]  H. Matsumoto,et al.  Cytotoxic thio-malate is transported by both an aluminum-responsive malate efflux pathway in wheat and the MAE1 malate permease in Schizosaccharomyces pombe , 2006, Planta.

[36]  M. C. Furlaneto,et al.  Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana. , 2004, Journal of microbiological methods.

[37]  Young Cheol Kim,et al.  Transcriptional regulation and mutational analysis of a dctA gene encoding an organic acid transporter protein from Pseudomonas chlororaphis O6. , 2003, Gene.

[38]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[39]  Elias S. J. Arnér,et al.  Physiological functions of thioredoxin and thioredoxin reductase. , 2000, European journal of biochemistry.

[40]  K. Gould,et al.  The role of the Sid1p kinase and Cdc14p in regulating the onset of cytokinesis in fission yeast , 2000, The EMBO journal.

[41]  J. Guest,et al.  Inactivation and Regulation of the Aerobic C4-Dicarboxylate Transport (dctA) Gene ofEscherichia coli , 1999, Journal of bacteriology.

[42]  J. Guest,et al.  Transcriptional Regulation and Organization of thedcuA and dcuB Genes, Encoding Homologous Anaerobic C4-Dicarboxylate Transporters inEscherichia coli , 1998 .

[43]  J. Pronk,et al.  Identification and Characterization ofMAE1, the Saccharomyces cerevisiae Structural Gene Encoding Mitochondrial Malic Enzyme , 1998, Journal of bacteriology.

[44]  A. Bakalinsky,et al.  SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae , 1997, Journal of bacteriology.

[45]  J. Neuhard,et al.  Utilization of orotate as a pyrimidine source by Salmonella typhimurium and Escherichia coli requires the dicarboxylate transport protein encoded by dctA , 1996, Journal of bacteriology.

[46]  H. V. van Vuuren,et al.  The mae1 gene of Schizosaccharomyces pombe encodes a permease for malate and other C4 dicarboxylic acids , 1995, Yeast.

[47]  R. K. Saxena,et al.  D-Glucose soluble starch, a novel medium for inducing microcyclic conidiation in Aspergillus , 1992 .

[48]  Trevor C. Charles,et al.  Analysis of C4‐dicarboxylate transport genes in Rhizobium meliloti , 1989, Molecular microbiology.

[49]  J. M. Wood,et al.  Symbiotic properties of C4-dicarboxylic acid transport mutants of Rhizobium leguminosarum , 1983, Journal of bacteriology.