INTERACTION OF SOLITONS FROM THE PDE POINT OF VIEW

We review recent results concerning the interactions of solitary waves for several universal nonlinear dispersive or wave equations. Though using quite different techniques, these results are partly inspired by classical papers based on the inverse scattering theory for integrable models.

[1]  B. Uçar,et al.  Eigenvalues , 2020, Spectra and Pseudospectra.

[2]  Tien Vinh Nguyen Existence of multi-solitary waves with logarithmic relative distances for the NLS equation , 2016, Comptes Rendus Mathematique.

[3]  Jacek Jendrej Construction of two-bubble solutions for energy-critical wave equations , 2016, American Journal of Mathematics.

[4]  N. Shah,et al.  About Pure and Applied Mathematics , 2018 .

[5]  P. Perry,et al.  Soliton Resolution for the Derivative Nonlinear Schrödinger Equation , 2017, 1710.03819.

[6]  F. Merle,et al.  Inelasticity of soliton collisions for the 5D energy critical wave equation , 2017, Inventiones mathematicae.

[7]  Yvan Martel,et al.  Construction of Multibubble Solutions for the Critical GKDV Equation , 2017, SIAM J. Math. Anal..

[8]  Y. Martel,et al.  Multi-travelling waves for the nonlinear Klein-Gordon equation , 2016, Transactions of the American Mathematical Society.

[9]  K. Mclaughlin,et al.  Long time asymptotic behavior of the focusing nonlinear Schrödinger equation , 2016, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[10]  Jacek Jendrej,et al.  Two-bubble dynamics for threshold solutions to the wave maps equation , 2017, 1706.00089.

[11]  Tien Vinh Nguyen Strongly interacting multi-solitons with logarithmic relative distance for gKdV equation , 2017, 1705.07319.

[12]  Jacek Jendrej Construction of type II blow-up solutions for the energy-critical wave equation in dimension 5 , 2015, 1503.05024.

[13]  P. Gérard,et al.  A Two-Soliton with Transient Turbulent Regime for the Cubic Half-Wave Equation on the Real Line , 2016, 1611.08482.

[14]  Y. Martel,et al.  Construction of Multi-Solitons for the Energy-Critical Wave Equation in Dimension 5 , 2016, Archive for Rational Mechanics and Analysis.

[15]  Y. Martel,et al.  Sharp asymptotics for the minimal mass blow up solution of critical gKdV equation , 2016, 1602.03519.

[16]  F. Merle,et al.  Soliton resolution along a sequence of times for the focusing energy critical wave equation , 2016, 1601.01871.

[17]  Y. Martel,et al.  On asymptotic stability of nonlinear waves , 2016 .

[18]  Pierre Raphael,et al.  STRONGLY INTERACTING BLOW UP BUBBLES FOR THE MASS CRITICAL NLS , 2015, 1512.00900.

[19]  Claudio Munoz,et al.  Kink dynamics in the $\phi^4$ model: asymptotic stability for odd perturbations in the energy space , 2015, 1506.07420.

[20]  F. Merle,et al.  Construction of Multi-Solitons for the Energy-Critical Wave Equation in Dimension 5 , 2015, 1504.01595.

[21]  Pierre Germain,et al.  Asymptotic stability of solitons for mKdV , 2015, 1503.09143.

[22]  C. Kenig,et al.  Characterization of large energy solutions of the equivariant wave map problem: II , 2015 .

[23]  Mei Ming,et al.  Multi-solitons and Related Solutions for the Water-waves System , 2013, SIAM J. Math. Anal..

[24]  G. Fibich Stability of Solitary Waves , 2015 .

[25]  Jacek Jendrej Construction of two-bubble solutions for some energy-critical wave equations , 2015 .

[26]  F. Merle,et al.  On the nonexistence of pure multi-solitons for the quartic gKdV equation , 2014, 1409.7876.

[27]  C. Kenig,et al.  Channels of energy for the linear radial wave equation , 2014, 1409.3643.

[28]  F. Merle,et al.  Blow up for the critical generalized Korteweg–de Vries equation. I: Dynamics near the soliton , 2014 .

[29]  F. Merle,et al.  Solutions of the focusing nonradial critical wave equation with the compactness property , 2014, 1402.0365.

[30]  R. Cote,et al.  Multi-solitons for nonlinear Klein–Gordon equations , 2012, Forum of Mathematics, Sigma.

[31]  R. Cote,et al.  Soliton resolution for equivariant wave maps to the sphere , 2013, 1305.5325.

[32]  D. Pelinovsky,et al.  The asymptotic stability of solitons in the cubic NLS equation on the line , 2013, 1302.1215.

[33]  C. Kenig,et al.  Relaxation of Wave Maps Exterior to a Ball to Harmonic Maps for All Data , 2013, 1301.0817.

[34]  C. Kenig,et al.  Characterization of large energy solutions of the equivariant wave map problem: I , 2012, 1209.3684.

[35]  K. Nakanishi,et al.  Threshold Phenomenon for the Quintic Wave Equation in Three Dimensions , 2012, 1209.0347.

[36]  Claudio Munoz,et al.  On the nonlinear stability of mKdV breathers , 2012, 1206.3151.

[37]  M. Beceanu A critical center‐stable manifold for Schrödinger's equation in three dimensions , 2012 .

[38]  F. Merle,et al.  Classification of radial solutions of the focusing, energy-critical wave equation , 2012, 1204.0031.

[39]  Claudio Muñoz Inelastic Character of Solitons of Slowly Varying gKdV Equations , 2011, 1107.5328.

[40]  Claudio Muñoz,et al.  Dynamics of Soliton-like Solutions for Slowly Varying, Generalized KdV Equations: Refraction versus Reflection , 2010, SIAM J. Math. Anal..

[41]  Kenji Nakanishi,et al.  Invariant Manifolds and Dispersive Hamiltonian Evolution Equations , 2011 .

[42]  Scipio Cuccagna,et al.  On asymptotic stability of moving ground states of the nonlinear Schrödinger equation , 2011, 1107.4954.

[43]  O. Costin,et al.  On the spectral properties of L± in three dimensions , 2011, 1107.0323.

[44]  G. Perelman Two soliton collision for nonlinear Schrödinger equations in dimension 1 , 2011 .

[45]  N. Quintero,et al.  SINE-GORDON WOBBLES THROUGH B ACKLUND TRANSFORMATIONS , 2010 .

[46]  Jianke Yang,et al.  Nonlinear Waves in Integrable and Nonintegrable Systems , 2010, Mathematical modeling and computation.

[47]  K. Nakanishi,et al.  Global dynamics away from the ground state for the energy-critical nonlinear wave equation , 2010, 1010.3799.

[48]  Vianney Combet Multi-existence of multi-solitons for the supercritical nonlinear Schr\ , 2010, 1008.4613.

[49]  F. Merle,et al.  Universality of the blow-up profile for small type II blow-up solutions of energy-critical wave equation: the non-radial case , 2010, 1003.0625.

[50]  Vianney Combet Multi-Soliton Solutions for the Supercritical gKdV Equations , 2010, 1002.2354.

[51]  A. Komech,et al.  On Asymptotic Stability of Moving Kink for Relativistic Ginzburg-Landau Equation , 2009, 0910.5538.

[52]  A. Komech,et al.  On Asymptotic Stability of Kink for Relativistic Ginzburg–Landau Equations , 2009, 0910.5539.

[53]  F. Merle,et al.  Inelastic interaction of nearly equal solitons for the quartic gKdV equation , 2009, 0910.3204.

[54]  F. Merle,et al.  Universality of blow-up profile for small radial type II blow-up solutions of energy-critical wave equation , 2009, 0910.2594.

[55]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[56]  Frank Merle,et al.  Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations , 2009, 0905.0470.

[57]  Claudio Muñoz On the Inelastic Two-Soliton Collision for gKdV Equations with General Nonlinearity , 2009, 0903.1240.

[58]  D. Frantzeskakis,et al.  Solitary Wave Collisions , 2009 .

[59]  Wilhelm Schlag,et al.  Stable manifolds for an orbitally unstable nonlinear Schrödinger equation , 2009 .

[60]  Joachim Krieger,et al.  Two‐soliton solutions to the three‐dimensional gravitational Hartree equation , 2008, 0811.3637.

[61]  Petre P. Teodorescu,et al.  On the solitons and nonlinear wave equations , 2008 .

[62]  Y. Martel,et al.  Asymptotic stability of solitons for the Benjamin-Ono equation , 2008, 0803.3683.

[63]  Terence Tao,et al.  Why are solitons stable , 2008, 0802.2408.

[64]  S. Cuccagna On asymptotic stability in 3D of kinks for the ⁴ model , 2007, 0801.2678.

[65]  F. Merle,et al.  Dynamic of threshold solutions for energy-critical wave equation , 2007, 0710.5934.

[66]  F. Merle,et al.  Description of two soliton collision for the quartic gKdV equation , 2007, 0709.2672.

[67]  M. Zworski,et al.  Soliton interaction with slowly varying potentials , 2007, 0709.0478.

[68]  M. Zworski,et al.  Slow soliton interaction with delta impurities , 2007, math/0702465.

[69]  M. Zworski,et al.  Soliton Splitting by External Delta Potentials , 2006, J. Nonlinear Sci..

[70]  M. Zworski,et al.  Fast Soliton Scattering by Delta Impurities , 2006, math/0602187.

[71]  D. Tataru,et al.  SLOW BLOW-UP SOLUTIONS FOR THE H(R) CRITICAL FOCUSING SEMI-LINEAR WAVE EQUATION , 2007 .

[72]  M. Beceanu A Centre-Stable Manifold for the Focussing Cubic NLS in R 1+3 , 2007 .

[73]  Frank Merle,et al.  Multi solitary waves for nonlinear Schrödinger equations , 2006 .

[74]  F. Merle,et al.  Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation , 2006, math/0610801.

[75]  Philippe Guyenne,et al.  Solitary water wave interactions , 2006 .

[76]  T. Tao Scattering for the quartic generalised Korteweg–de Vries equation , 2006, math/0605357.

[77]  W. Schlag Spectral theory and nonlinear partial differential equations: A survey , 2006 .

[78]  Michel Peyrard,et al.  Physics of Solitons , 2006 .

[79]  小澤 徹,et al.  Nonlinear dispersive equations , 2006 .

[80]  Yvan Martel,et al.  Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations , 2005 .

[81]  Frank Merle,et al.  Profiles and Quantization of the Blow Up Mass for Critical Nonlinear Schrödinger Equation , 2005 .

[82]  Frank Merle,et al.  Asymptotic stability of solitons of the subcritical gKdV equations revisited , 2005 .

[83]  Frank Merle,et al.  On universality of blow-up profile for L2 critical nonlinear Schrödinger equation , 2004 .

[84]  I. Rodnianski,et al.  The nonlinear Schrödinger equation , 2008 .

[85]  I. Rodnianski,et al.  Dispersive analysis of charge transfer models , 2003, math/0309112.

[86]  K. Nakanishi,et al.  Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves , 2003, math-ph/0308009.

[87]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[88]  Luc Molinet,et al.  On the Cauchy Problem for the Generalized Korteweg-de Vries Equation , 2003 .

[89]  G. Perelman Asymptotic stability of solitary waves for nonlinear Schrödinger equations , 2003 .

[90]  Tetsu Mizumachi,et al.  Weak Interaction between Solitary Waves of the Generalized KdV Equations , 2003, SIAM J. Math. Anal..

[91]  F. Merle,et al.  Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation , 2004, math/0405229.

[92]  P. Deift,et al.  Perturbation theory for infinite-dimensional integrable systems on the line. A case study , 2002 .

[93]  F. Merle,et al.  Stability and Asymptotic Stability in the Energy Space of the Sum of N Solitons for Subcritical gKdV Equations , 2001, math/0112071.

[94]  Yvan Martel,et al.  Asymptotic Stability of Solitons¶for Subcritical Generalized KdV Equations , 2001 .

[95]  Frank Merle,et al.  A Liouville theorem for the critical generalized Korteweg–de Vries equation , 2000 .

[96]  S. B. Kuksin Analysis of Hamiltonian PDEs , 2000 .

[97]  Yi Li,et al.  Soliton Collisions in the Ion Acoustic Plasma Equations , 1999, solv-int/9906002.

[98]  Nakao Hayashi,et al.  LARGE TIME ASYMPTOTICS OF SOLUTIONS TO THE GENERALIZED KORTEWEG-DE VRIES EQUATION , 1998 .

[99]  S. Manakov,et al.  Asymptotic behavior of non-linear wave systems integrated by the inverse scattering method , 1996 .

[100]  Vladimir S. Buslaev,et al.  On the stability of solitary waves for nonlinear Schr?odinger equations , 1995 .

[101]  Ohta,et al.  Equation of motion for interacting pulses. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[102]  P. Deift,et al.  The collisionless shock region for the long-time behavior of solutions of the KdV equation , 1994 .

[103]  C. Kenig,et al.  Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .

[104]  Percy Deift,et al.  Long-Time Asymptotics for Integrable Nonlinear Wave Equations , 1993 .

[105]  A. Soffer,et al.  Multichannel nonlinear scattering for nonintegrable equations II. The case of anisotropic potentials and data , 1992 .

[106]  Michael I. Weinstein,et al.  Eigenvalues, and instabilities of solitary waves , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[107]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[108]  R. Pego,et al.  On asymptotic stability of solitary waves , 1992 .

[109]  W. Rother,et al.  Nonlinear scalar field equations , 1992, Differential and Integral Equations.

[110]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[111]  Michael I. Weinstein,et al.  Multichannel nonlinear scattering for nonintegrable equations , 1990 .

[112]  Frank Merle,et al.  Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity , 1990 .

[113]  M. Grillakis,et al.  Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system , 1990 .

[114]  P. Souganidis,et al.  Stability and instability of solitary waves of Korteweg-de Vries type , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[115]  E. Olmedilla,et al.  Multiple pole solutions of the non-linear Schro¨dinger equation , 1987 .

[116]  Randall J. LeVeque,et al.  On the interaction of nearly equal solitons in the KdV equation , 1987 .

[117]  Leon A. Takhtajan,et al.  Hamiltonian methods in the theory of solitons , 1987 .

[118]  P. Schuur Asymptotic analysis of soliton problems , 1986 .

[119]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[120]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[121]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[122]  H. Segur Wobbling kinks in φ4 and sine‐Gordon theory , 1983 .

[123]  Peter Schuur,et al.  The emergence of solutions of the Korteweg-de Vries equation form arbitrary initial conditions , 1983 .

[124]  P. Lions,et al.  Orbital stability of standing waves for some nonlinear Schrödinger equations , 1982 .

[125]  Daniel B. Henry,et al.  Stability theory for solitary-wave solutions of scalar field equations , 1982 .

[126]  Kenji Ohkuma,et al.  Multiple-Pole Solutions of the Modified Korteweg-de Vries Equation , 1982 .

[127]  V. Karpman,et al.  A perturbational approach to the two-soliton systems , 1981 .

[128]  Lev A. Ostrovsky,et al.  Interactions of solitons in nonintegrable systems: Direct perturbation method and applications , 1981 .

[129]  L. Y. Shih Soliton-like interaction governed by the generalized Korteweg-de Vries equation , 1980 .

[130]  L. R. Scott,et al.  Solitary‐wave interaction , 1980 .

[131]  G. Lamb Elements of soliton theory , 1980 .

[132]  A. Cohen Existence and regularity for solutions of the Korteweg-de Vries equation , 1979 .

[133]  J. Ginibre,et al.  On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case , 1979 .

[134]  P. Deift,et al.  Inverse scattering on the line , 1979 .

[135]  R. Miura The Korteweg–deVries Equation: A Survey of Results , 1976 .

[136]  J. Bona On the stability theory of solitary waves , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[137]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[138]  Hiroaki Ono On a Modified Korteweg-de Vries Equation , 1974 .

[139]  C. S. Gardner,et al.  Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .

[140]  M. Kruskal The Korteweg-de Vries equation and related evolution equations , 1974 .

[141]  Morikazu Toda,et al.  The Exact N-Soliton Solution of the Korteweg-de Vries Equation , 1972 .

[142]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[143]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[144]  C. S. Gardner,et al.  Korteweg‐de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion , 1968 .

[145]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[146]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[147]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[148]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[149]  A C Scott,et al.  Korteweg-de Vries Equation , 2022 .