Modelling of deformations of high strength concrete at elevated temperatures

A constitutive model for the analysis of deformations of concrete subject to transient temperature and pressures is proposed. In these severe conditions concrete structures experience spalling phenomenon, which is the violent or non-violent breaking off of layers or pieces of concrete from the surface of a structural element when it is exposed to high and rapidly rising temperatures. This process can lead to a loss of load-bearing capacity, trough a loss of section and a loss of protection to steel reinforcement. Many different form of spalling exist, but probably the most dangerous is explosive spalling, because it is sudden and capable to result in a general collapse of the structure.The constitutive model includes thermo-chemical and mechanical damage for taking into account the deterioration of the material due to mechanical loads, high temperatures and chemical changes and it is introduced into a general coupled mathematical model of hygro-thermo-chemomechanical behaviour of concrete structures.In this constitutive model the so called free thermal strains, which are the concrete strains during first heating, are decomposed in three main contributions: thermal dilatation strains (treated in a manner usual in thermomechanics), shrinkage strains (modelled by means of the effective stress principle) and thermo-chemical strains (which take into account for the thermo-chemical decomposition of the concrete and which are related to thermo-chemical damage). Thermo-mechanical strains occurring during first heating of concrete under load, known as LITS (Load Induced Thermal Strains), are also included in the framework of thermodynamics of porous media. The proposed model is applied to an illustrative example that demonstrates its capabilities.RésuméNous proposons un modèle pour l'étude des déformations du béton sous variations de température et pression. Dans ces conditions extrêmes, le béton subit l'écaillage qui est une rupture violente ou non de couches ou pièces de béton sur la surface d'éléments structurels soumis à haute température ou température augmentant rapidement. Ce fait peut produire une diminution de la capacité portante à travers une diminution de la section ou la perte de protection du maillage. Il y a différentes formes d'écaillage mais le plus dangereux est probablement l'écaillage explosif car il est sans préavis et entraîne l'écroulement de la structure.Le modèle constitutif inclut l'endommagement thermochimique et mécanique pour prendre en compte la détérioration du matériau due aux charges mécaniques, aux hautes températures et aux chargements chimiques.Tout ceci est introduit dans un modèle mathématique couplé pour la description du comportement hygrothermochimique et mécanique des structures en béton. Dans ce modèle constitutif, les déformations thermiques libres, c'est à dire les déformations dans le béton pendant le premier échauffement sont décomposés en trois parties: déformations dues à la dilatation thermique (traitées selon la manière habituelle de la thermomécanique), déformations dues au séchage (modèles à l'aide des contraintes effectives) et déformations thermochimiques (qui prennent en compte la décomposition thermochimique du béton et qui sont liées à l'endommagement thermochimique). Les déformations thermomécaniques qui ont lieu pendant le premier échauffement du béton sous charge, généralement connues sous le nom de LITS (Load Induced Thermal Strain) sont aussi inclues dans le cadre de la thermodynamique des milieux poreux. Le modèle proposé est appliqué à un exemple pour démontrer ses capacités.

[1]  Franz-Josef Ulm,et al.  THE "CHUNNEL" FIRE. II: ANALYSIS OF CONCRETE DAMAGE , 1999 .

[2]  Cv Nielsen,et al.  A Transient Thermal Creep Model for the Hygral-Thermal-Mechanical Analysis of Concrete , 2003 .

[3]  Gabriel A. Khoury,et al.  Transient thermal strain of concrete: literature review, conditions within specimen and behaviour of individual constituents , 1985 .

[4]  R. Taylor The Finite Element Method, the Basis , 2000 .

[5]  Bernhard A. Schrefler,et al.  Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature , 1999 .

[6]  Zdenek P. Bazant,et al.  Pore Pressure and Drying of Concrete at High Temperature , 1978 .

[7]  Long T. Phan,et al.  International Workshop on Fire Performance of High-Strength Concrete, NIST, Gaithersburg, MD, February 13-14, 1997, Proceedings | NIST , 1997 .

[8]  Sven Thelandersson,et al.  Modeling of Combined Thermal and Mechanical Action in Concrete , 1987 .

[9]  Olivier Coussy,et al.  Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials , 1999 .

[10]  William G. Gray,et al.  Thermodynamic approach to effective stress in partially saturated porous media , 2001 .

[11]  William G. Gray,et al.  General conservation equations for multi-phase systems: 1. Averaging procedure , 1979 .

[12]  J. Mazars APPLICATION DE LA MECANIQUE DE L'ENDOMMAGEMENT AU COMPORTEMENT NON LINEAIRE ET A LA RUPTURE DU BETON DE STRUCTURE , 1984 .

[13]  Bernhard A. Schrefler,et al.  Simulation of damage-permeability coupling in hygro-thermo mechanical analysis of concrete at high temperature , 2002 .

[14]  William G. Gray,et al.  General conservation equations for multi-phase systems: 2. Mass, momenta, energy, and entropy equations , 1979 .

[15]  J. Chaboche Continuum Damage Mechanics: Part I—General Concepts , 1988 .

[16]  B. Schrefler,et al.  The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .

[17]  Z. Bažant,et al.  The chunnel fire. I: Chemoplastic softening in rapidly heated concrete , 1999 .

[18]  James R. Lawson,et al.  Effects of elevated temperature exposure on heating characteristics, spalling, and residual properties of high performance concrete , 2001 .

[19]  Gabriel A. Khoury,et al.  Strain components of nuclear-reactor-type concretes during first heat cycle , 1995 .

[20]  Jian-Fu Shao,et al.  Modelling of elastoplastic damage in concrete due to desiccation shrinkage , 2002 .

[21]  Bernhard A. Schrefler,et al.  The effective stress principle: Incremental or finite form? , 1996 .

[22]  Z. Bažant,et al.  Concrete at High Temperatures: Material Properties and Mathematical Models , 1996 .

[23]  J. Z. Zhu,et al.  The finite element method , 1977 .

[24]  William G. Gray,et al.  General conservation equations for multi-phase systems: 3. Constitutive theory for porous media flow. , 1980 .

[25]  Bernhard A. Schrefler,et al.  Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions* , 2002 .

[26]  Olivier Coussy,et al.  Mechanics of porous continua , 1995 .

[27]  L. Kachanov,et al.  Rupture Time Under Creep Conditions , 1999 .

[28]  Bernhard A. Schrefler,et al.  Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation , 2003 .

[29]  N. Carino,et al.  Effects of Test Conditions and Mixture Proportions on Behavior of High-Strength Concrete Exposed to High Temperatures , 2002 .

[30]  G. L. England,et al.  Moisture flow in concrete under steady state non-uniform temperature states: experimental observations and theoretical modelling , 1995 .

[31]  Dale P. Bentz,et al.  Fibers, Percolation, and Spalling of High-Performance Concrete , 2000 .

[32]  Bernhard A. Schrefler,et al.  Modelling of hygro‐thermal behaviour and damage of concrete at temperature above the critical point of water , 2002 .