Potential Drug Target Discovery Based on Bioinformatics Methods*: Potential Drug Target Discovery Based on Bioinformatics Methods*

[1]  Jill P. Mesirov,et al.  GSEA-P: a desktop application for Gene Set Enrichment Analysis , 2007, Bioinform..

[2]  Xiaoyan Zhu,et al.  Extract interaction detection methods from the biological literature , 2009, BMC Bioinformatics.

[3]  T. Barrette,et al.  Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. , 2007, Neoplasia.

[4]  Nobuyoshi Sugaya,et al.  Assessing the druggability of protein-protein interactions by a supervised machine-learning method , 2009, BMC Bioinformatics.

[5]  Edda Klipp,et al.  TIde: a software for the systematic scanning of drug targets in kinetic network models , 2009, BMC Bioinformatics.

[6]  Dalia Cohen,et al.  Genomic approaches to drug discovery. , 2006, Current opinion in chemical biology.

[7]  Jacky L. Snoep,et al.  BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems , 2005, Nucleic Acids Res..

[8]  Thomas A. Halgren,et al.  Identifying and Characterizing Binding Sites and Assessing Druggability , 2009, J. Chem. Inf. Model..

[9]  Guanghui Hu,et al.  Human Disease-Drug Network Based on Genomic Expression Profiles , 2009, PloS one.

[10]  L. Hansen,et al.  The effect of genetic variability on drug response in conventional breast cancer treatment. , 2009, European journal of pharmacology.

[11]  P. Aloy,et al.  Unveiling the role of network and systems biology in drug discovery. , 2010, Trends in pharmacological sciences.

[12]  P. Stafford,et al.  Three methods for optimization of cross-laboratory and cross-platform microarray expression data , 2007, Nucleic acids research.

[13]  Andrew Emili,et al.  Proteomic methods for drug target discovery. , 2008, Current opinion in chemical biology.

[14]  Xiaomin Luo,et al.  PDTD: a web-accessible protein database for drug target identification , 2008, BMC Bioinformatics.

[15]  Jaakko Astola,et al.  Comparison of Affymetrix data normalization methods using 6,926 experiments across five array generations , 2009, BMC Bioinformatics.

[16]  Jacky L. Snoep,et al.  Web-based kinetic modelling using JWS Online , 2004, Bioinform..

[17]  S. Kuhara,et al.  An integrative in silico approach for discovering candidates for drug-targetable protein-protein interactions in interactome data , 2007, BMC pharmacology.

[18]  Donald Geman,et al.  Large-scale integration of cancer microarray data identifies a robust common cancer signature , 2007, BMC Bioinformatics.

[19]  Ricard V. Solé,et al.  Human synthetic lethal inference as potential anti-cancer target gene detection , 2009, BMC Systems Biology.

[20]  Johan Lindberg,et al.  Statistical multivariate metabolite profiling for aiding biomarker pattern detection and mechanistic interpretations in GC/MS based metabolomics , 2007, Metabolomics.

[21]  David P. Davis,et al.  Discovering cancer genes by integrating network and functional properties , 2009, BMC Medical Genomics.

[22]  Luonan Chen,et al.  Detecting drug targets with minimum side effects in metabolic networks. , 2009, IET systems biology.

[23]  P. Aloy,et al.  A network medicine approach to human disease , 2009, FEBS letters.

[24]  Yongliang Yang,et al.  Target discovery from data mining approaches. , 2009, Drug discovery today.

[25]  Andrew J. Doig,et al.  Properties and identification of human protein drug targets , 2009, Bioinform..

[26]  P. Brown,et al.  Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  E. Sonnhammer,et al.  Network-based Identification of Novel Cancer Genes , 2009, Molecular & Cellular Proteomics.

[28]  Yongjin Li,et al.  Discovering disease-genes by topological features in human protein-protein interaction network , 2006, Bioinform..

[29]  Yan Zhang,et al.  Comparative serum proteome analysis of human lymph node negative/positive invasive ductal carcinoma of the breast and benign breast disease controls via label-free semiquantitative shotgun technology. , 2009, Omics : a journal of integrative biology.

[30]  Bor-Sen Chen,et al.  Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug targets , 2008, BMC Systems Biology.

[31]  Philip E. Bourne,et al.  Drug Discovery Using Chemical Systems Biology: Identification of the Protein-Ligand Binding Network To Explain the Side Effects of CETP Inhibitors , 2009, PLoS Comput. Biol..