Transforming graph states to Bell-pairs is NP-Complete

Critical to the construction of large scale quantum networks, i.e. a quantum internet, is the development of fast algorithms for managing entanglement present in the network. One fundamental building block for a quantum internet is the distribution of Bell pairs between distant nodes in the network. Here we focus on the problem of transforming multipartite entangled states into the tensor product of bipartite Bell pairs between specific nodes using only a certain class of local operations and classical communication. In particular we study the problem of deciding whether a given graph state, and in general a stabilizer state, can be transformed into a set of Bell pairs on specific vertices using only single-qubit Clifford operations, single-qubit Pauli measurements and classical communication. We prove that this problem is NP-Complete.

[1]  G. Vidal,et al.  Classical simulation versus universality in measurement-based quantum computation , 2006, quant-ph/0608060.

[2]  Saikat Guha,et al.  Percolation thresholds for photonic quantum computing , 2017, Nature Communications.

[3]  Cesar Beltran-Royo,et al.  Solving the edge-disjoint paths problem using a two-stage method , 2020, Int. Trans. Oper. Res..

[4]  Axel Dahlberg,et al.  Transforming graph states using single-qubit operations , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  Alexander Langer,et al.  Practical algorithms for MSO model-checking on tree-decomposable graphs , 2014, Comput. Sci. Rev..

[6]  André Bouchet,et al.  Circle Graph Obstructions , 1994, J. Comb. Theory, Ser. B.

[7]  Klaudia Frankfurter,et al.  Graph Theory 1736 1936 , 2016 .

[8]  Bruno Courcelle,et al.  Vertex-minors, monadic second-order logic, and a conjecture by Seese , 2007, J. Comb. Theory, Ser. B.

[9]  André Bouchet,et al.  Graphic presentations of isotropic systems , 1987, J. Comb. Theory, Ser. B.

[10]  J. Eisert,et al.  Quantum network routing and local complementation , 2018, npj Quantum Information.

[11]  Shimon Even,et al.  Graph Algorithms: Contents , 2011 .

[12]  H. Bombin,et al.  Exact topological quantum order in D=3 and beyond : Branyons and brane-net condensates , 2006, cond-mat/0607736.

[13]  Axel Dahlberg,et al.  How to transform graph states using single-qubit operations: computational complexity and algorithms , 2018, Quantum Science and Technology.

[14]  Salman Beigi,et al.  An Efficient Algorithm to Recognize Locally Equivalent Graphs in Non-Binary Case , 2007, ArXiv.

[15]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[16]  J. Eisert,et al.  Entanglement in Graph States and its Applications , 2006, quant-ph/0602096.

[17]  Bart De Moor,et al.  Graphical description of the action of local Clifford transformations on graph states , 2003, quant-ph/0308151.

[18]  P. C. Humphreys,et al.  Entanglement distillation between solid-state quantum network nodes , 2017, Science.

[19]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[20]  Leandros Tassiulas,et al.  Routing entanglement in the quantum internet , 2017, npj Quantum Information.

[21]  Jens Vygen,et al.  NP-completeness of Some Edge-disjoint Paths Problems , 1995, Discret. Appl. Math..

[22]  H. Bombin Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes , 2013, 1311.0879.

[23]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.

[24]  Axel Dahlberg,et al.  The complexity of the vertex-minor problem , 2019, Inf. Process. Lett..

[25]  Rodney Van Meter,et al.  Analysis of measurement-based quantum network coding over repeater networks under noisy conditions , 2017, Physical Review A.

[26]  Sang-il Oum,et al.  Rank-width and vertex-minors , 2005, J. Comb. Theory, Ser. B.

[27]  David A. Bader,et al.  Graph Algorithms , 2011, Encyclopedia of Parallel Computing.

[28]  André Bouchet,et al.  An efficient algorithm to recognize locally equivalent graphs , 1991, Comb..

[29]  Julio A. de Oliveira Filho,et al.  A link layer protocol for quantum networks , 2019, SIGCOMM.

[30]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[31]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[32]  Bart De Moor,et al.  Efficient algorithm to recognize the local Clifford equivalence of graph states , 2004 .

[33]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[34]  Gerardo Adesso,et al.  Foundations of quantum mechanics and their impact on contemporary society , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.