Laser light backscatter from intermediate and high Z plasmas

In experiments at the Omega Laser Facility [J. M. Soures et al., Fusion Technol. 30, 492 (1996)], stimulated Brillouin backscatter (SBS) from gasbags filled with krypton and xenon gases was ten times lower than from CO2-filled gasbags with similar electron densities. The SBS backscatter was a 1%–5% for both 527 and 351nm interaction beams at an intensity of ∼1015W∕cm2. The SRS backscatter was less than 1%. The 351nm interaction beam is below the threshold for filamentation and the SBS occurs in the density plateau between the blast waves. Inverse bremsstrahlung absorption of the incident and SBS light account for the lower reflectivity from krypton than from CO2. The 527nm interaction beam filaments in the blowoff plasma before the beam propagates through the blast wave, where it is strongly absorbed. Thus, most of the 527nm SBS occurs in the flowing plasma outside the blast waves.

[1]  V. Tikhonchuk,et al.  Electron kinetic effects in the nonlinear evolution of a driven ion-acoustic wave. , 2005, Physical review letters.

[2]  M. Rosen,et al.  Hydrodynamics of exploding foil x‐ray lasers , 1986 .

[3]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[4]  J. A. Paisner,et al.  The National Ignition Facility Project , 1994 .

[5]  Erlan S. Bliss,et al.  Nova experimental facility (invited) , 1986 .

[6]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[7]  V. Tikhonchuk,et al.  Parametric instability of a driven ion-acoustic wave , 2005 .

[8]  L. Divol,et al.  Nonlinear saturation of stimulated Brillouin scattering for long time scales , 2003 .

[9]  A. B. Langdon,et al.  Modeling the nonlinear saturation of stimulated Brillouin backscatter in laser heated plasmas , 2003 .

[10]  Epperlein Kinetic theory of laser filamentation in plasmas. , 1990, Physical review letters.

[11]  L. Divol,et al.  Observation of ion heating by stimulated-Brillouin-scattering-driven ion-acoustic waves using Thomson scattering , 2002 .

[12]  V. Tikhonchuk,et al.  Electron and ion kinetic effects in the saturation of a driven ion acoustic wave , 2005 .

[13]  W. Manheimer,et al.  Modulational Instabilities Due to Trapped Electrons , 1972 .

[14]  Kevin B. Fournier,et al.  Electron-Density Scaling of Conversion Efficiency of Laser Energy into L-shell X-rays , 2006 .

[15]  L. Divol,et al.  Intensity limits for propagation of 0.527 microm laser beams through large-scale-length plasmas for inertial confinement fusion. , 2005, Physical review letters.

[16]  S. Depierreux,et al.  Thomson-scattering study of the subharmonic decay of ion-acoustic waves driven by the Brillouin instability. , 2004, Physical review letters.

[17]  R. Salomaa,et al.  Reduction of stimulated brillouin scattering by the generation of ion acoustic harmonics , 1982 .

[18]  A. Langdon,et al.  Landau‐fluid simulation of laser filamentation , 1994 .

[19]  Rose,et al.  Laser hot spots and the breakdown of linear instability theory with application to stimulated Brillouin scattering. , 1994, Physical review letters.

[20]  N. Meezan,et al.  Hydrodynamics of Blast Waves in LPI Gasbags , 2005 .

[21]  L. Divol,et al.  Saturation of Stimulated Brillouin Backscattering in Two-dimensional Kinetic Ion Simulations , 2004 .

[22]  Temporal behavior of backscattering instabilities in a three-dimensional cylindrical hot spot: I. Standard decay regime , 1999 .

[23]  L. Divol,et al.  Hydrodynamics simulations of 2ω laser propagation in underdense gasbag plasmas , 2004 .

[24]  J. D. Moody,et al.  Implementation of a high energy 4ω probe beam on the Omega laser , 2004 .

[25]  G. Zimmerman,et al.  A new quotidian equation of state (QEOS) for hot dense matter , 1988 .

[26]  Blain,et al.  Energetics of Inertial Confinement Fusion Hohlraum Plasmas , 1998 .

[27]  M. D. Tracy,et al.  Eigenvalue solution for the ion-collisional effects on ion-acoustic and entropy waves , 1993 .

[28]  J. D. Moody,et al.  Prospects for high-gain, high yield National Ignition Facility targets driven by 2ω (green) light , 2004 .

[29]  J. Knauer,et al.  The Role of the Laboratory for Laser Energetics in the National Ignition Facility Project , 1996 .

[30]  L. Divol,et al.  Thomson scattering measurements of saturated ion waves in laser fusion plasmas. , 2001, Physical review letters.

[31]  C. Randall Effect of ion collisionality on ion‐acoustic waves , 1982 .

[32]  A. B. Langdon,et al.  On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams , 1998 .

[33]  R. Salomaa,et al.  Efficient saturation of stimulated Brillouin scattering due to nonlinear ion wave decay , 1979 .