Colloidal nanocrystals of lithiated group 14 elements.

The synthesis of colloidal nanocrystals (NCs) of lithiated group 14 elements (Z=Si, Ge, and Sn) is reported, which are Li4.4 Si, Li3.75 Si, Li4.4 Ge, and Li4.4 Sn. Lix Z compounds are highly reactive and cannot be synthesized by existing methods. The success relied on separating the surface protection from the crystal formation and using a unique passivating ligand. Bare Lix Z crystals were first produced by milling elemental Li and Z in an argon-filled jar. Then, under the assistance of additional milling, hexyllithium was added to passivate the freshly generated Lix Z NCs. This ball-milling-assisted surface protection method may be generalized to similar systems, such as Nax Z and Kx Z. Moreover, Li4.4 Si and Li4.4 Ge NCs were conformally encapsulated in carbon fibers, providing great opportunities for studying the potential of using Lix Z to mitigate the volume-fluctuation-induced poor cyclability problem confronted by Z anodes in lithium-ion batteries.

[1]  J. Cloud,et al.  A simple and effective method for controllable synthesis of silver and silver oxide nanocrystals , 2014 .

[2]  Yadong Yin,et al.  Lithium‐Schwefel‐Batterien: Elektrochemie, Materialien und Perspektiven , 2013 .

[3]  Li-Jun Wan,et al.  Lithium-sulfur batteries: electrochemistry, materials, and prospects. , 2013, Angewandte Chemie.

[4]  Yi Cui,et al.  Elastic moduli of polycrystalline Li15Si4 produced in lithium ion batteries , 2013 .

[5]  T. Fässler,et al.  Revision of the Li–Si Phase Diagram: Discovery and Single-Crystal X-ray Structure Determination of the High-Temperature Phase Li4.11Si , 2013 .

[6]  Jason Graetz,et al.  Electrochemical Reaction of Lithium with Nanostructured Silicon Anodes: A Study by In‐Situ Synchrotron X‐Ray Diffraction and Electron Energy‐Loss Spectroscopy , 2013 .

[7]  H. Reich Role of organolithium aggregates and mixed aggregates in organolithium mechanisms. , 2013, Chemical reviews.

[8]  Zhenan Bao,et al.  Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles , 2013, Nature Communications.

[9]  Thomas A. Yersak,et al.  Conformal Coatings of Cyclized‐PAN for Mechanically Resilient Si nano‐Composite Anodes , 2013 .

[10]  Jiajun Li,et al.  Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. , 2013, ACS nano.

[11]  T. Fässler,et al.  Single Crystal Growth and Thermodynamic Stability of Li17Si4 , 2013 .

[12]  Li-Jun Wan,et al.  High-safety lithium-sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte , 2013 .

[13]  Yi Cui,et al.  In situ TEM of two-phase lithiation of amorphous silicon nanospheres. , 2013, Nano letters.

[14]  Yang Liu,et al.  Two-phase electrochemical lithiation in amorphous silicon. , 2013, Nano letters.

[15]  L. Archer,et al.  Lithium-sulfur battery cathode enabled by lithium-nitrile interaction. , 2013, Journal of the American Chemical Society.

[16]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[17]  Xianglong Li,et al.  The dimensionality of Sn anodes in Li-ion batteries , 2012 .

[18]  Rui-jun Ma,et al.  Chemical Preinsertion of Lithium: An Approach to Improve the Intrinsic Capacity Retention of Bulk Si Anodes for Li-ion Batteries. , 2012, The journal of physical chemistry letters.

[19]  S. T. Picraux,et al.  In situ atomic-scale imaging of electrochemical lithiation in silicon. , 2012, Nature nanotechnology.

[20]  Ting Zhu,et al.  In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures , 2012 .

[21]  Jiayan Luo,et al.  Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. , 2012, The journal of physical chemistry letters.

[22]  Jaephil Cho,et al.  Self-assembled germanium/carbon nanostructures as high-power anode material for the lithium-ion battery. , 2012, Angewandte Chemie.

[23]  Seong‐Hyeon Hong,et al.  High capacity and rate capability of core–shell structured nano-Si/C anode for Li-ion batteries , 2012 .

[24]  Ji‐Guang Zhang,et al.  Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes , 2012 .

[25]  M. Stanley Whittingham,et al.  History, Evolution, and Future Status of Energy Storage , 2012, Proceedings of the IEEE.

[26]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[27]  Danna Qian,et al.  Recent progress in cathode materials research for advanced lithium ion batteries , 2012 .

[28]  Bon-Cheol Ku,et al.  Structural Evolution of Polyacrylonitrile Fibers in Stabilization and Carbonization , 2012 .

[29]  Martin Winter,et al.  Structural characterization of the lithium silicides Li15Si4, Li13Si4, and Li7Si3 using solid state NMR. , 2012, Physical chemistry chemical physics : PCCP.

[30]  M. Winter,et al.  Structural and dynamic characterization of Li(12)Si(7) and Li(12)Ge(7) using solid state NMR. , 2012, Solid state nuclear magnetic resonance.

[31]  Fei Gao,et al.  In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. , 2012, Nano letters.

[32]  Bruno Scrosati,et al.  A contribution to the progress of high energy batteries: A metal-free, lithium-ion, silicon-sulfur battery , 2012 .

[33]  Yong Min Lee,et al.  Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. , 2012, Nano letters.

[34]  Hui Wu,et al.  Engineering empty space between Si nanoparticles for lithium-ion battery anodes. , 2012, Nano letters.

[35]  S. Jung,et al.  Facet-dependent lithium intercalation into Si crystals: Si(100) vs. Si(111). , 2011, Physical chemistry chemical physics : PCCP.

[36]  Jun Chen,et al.  A novel bath lily-like graphene sheet-wrapped nano-Si composite as a high performance anode material for Li-ion batteries , 2011 .

[37]  Yi Cui,et al.  Single Nanostructure Electrochemical Devices for Studying Electronic Properties and Structural Changes in Lithiated Si Nanowires , 2011 .

[38]  Jian Yu Huang,et al.  In situ TEM electrochemistry of anode materials in lithium ion batteries , 2011 .

[39]  M. Alcoutlabi,et al.  Electrospun Nanofiber-Based Anodes, Cathodes, and Separators for Advanced Lithium-Ion Batteries , 2011 .

[40]  Yi Cui,et al.  Prelithiated silicon nanowires as an anode for lithium ion batteries. , 2011, ACS nano.

[41]  John P. Sullivan,et al.  Ultrafast electrochemical lithiation of individual Si nanowire anodes. , 2011, Nano letters.

[42]  Jun Liu,et al.  Stabilization of Silicon Anode for Li-Ion Batteries , 2010 .

[43]  W. Han,et al.  Sn/SnOx Core−Shell Nanospheres: Synthesis, Anode Performance in Li Ion Batteries, and Superconductivity , 2010 .

[44]  G. Yushin,et al.  Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. , 2010, Journal of the American Chemical Society.

[45]  Xilin Chen,et al.  Carbon scaffold structured silicon anodes for lithium-ion batteries , 2010 .

[46]  K. Hansen,et al.  Electrolyte Conductivity Through the Shell of the Eastern Oyster Using a Four-Electrode Measurement , 2009 .

[47]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[48]  Phl Peter Notten,et al.  Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study , 2009 .

[49]  L. Trahey,et al.  Nanocomposites Derived from Phenol-Functionalized Si Nanoparticles for High Performance Lithium Ion Battery Anodes , 2009 .

[50]  H. Okamoto Li-Si (Lithium-Silicon) , 2009 .

[51]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[52]  Weiguo Song,et al.  Tin‐Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High‐Performance Anode Material in Lithium‐Ion Batteries , 2008 .

[53]  Yi Cui,et al.  High capacity Li ion battery anodes using ge nanowires. , 2008, Nano letters.

[54]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[55]  Yiping Wang,et al.  Sm–Co hard magnetic nanoparticles prepared by surfactant-assisted ball milling , 2007, Nanotechnology.

[56]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[57]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[58]  J. Dahn,et al.  Phase Changes in Electrochemically Lithiated Silicon at Elevated Temperature , 2006 .

[59]  Michael Holzapfel,et al.  Nano silicon for lithium-ion batteries , 2006 .

[60]  David Wexler,et al.  Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. , 2006, Angewandte Chemie.

[61]  Yongan Yang,et al.  Synthesis of CdSe and CdTe nanocrystals without precursor injection. , 2005, Angewandte Chemie.

[62]  N. Machida,et al.  Preparation of Li4.4GexSi1−x alloys by mechanical milling process and their properties as anode materials in all-solid-state lithium batteries , 2004 .

[63]  Yung-Eun Sung,et al.  Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries , 2004 .

[64]  P. McCormick,et al.  Mechanochemical synthesis of nanoparticles , 2004 .

[65]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[66]  J. Lee,et al.  Microemulsion syntheses of Sn and SnO2-Graphite nanocomposite anodes for Li-ion batteries , 2004 .

[67]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[68]  Kenji Fukuda,et al.  Carbon-Coated Si as a Lithium-Ion Battery Anode Material , 2002 .

[69]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[70]  N. Machida,et al.  Preparation of Li4.4Si Alloy by Use of Mechanical Milling Methods and Its Properties as Negative Electrodes in Lithium Cells , 2001 .

[71]  C. R. Martin,et al.  A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis , 2001 .

[72]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[73]  A. Pelton,et al.  The Ge- Li (Germanium-Lithium) system , 1997 .

[74]  Reinhard Nesper,et al.  Li21Si5, a Zintl phase as well as a Hume-Rothery phase , 1987 .

[75]  Rachid Yazami,et al.  A reversible graphite-lithium negative electrode for electrochemical generators , 1983 .

[76]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .