Recent advances in DFT codes based quantized frame expansions for erasure channels
暂无分享,去创建一个
[1] G. Robert Redinbo. Decoding real block codes: Activity detection Wiener estimation , 2000, IEEE Trans. Inf. Theory.
[2] Vivek K Goyal,et al. Quantized Frame Expansions with Erasures , 2001 .
[3] Peter G. Casazza,et al. Equal-Norm Tight Frames with Erasures , 2003, Adv. Comput. Math..
[4] Olivier Rioul,et al. Spectral interpolation coder for impulse noise cancellation over a binary symetric channel , 2000, 2000 10th European Signal Processing Conference.
[5] Farrokh Marvasti,et al. Efficient algorithms for burst error recovery using FFT and other transform kernels , 1999, IEEE Trans. Signal Process..
[6] Christine Guillemot,et al. Frame-theoretic analysis of DFT codes with erasures , 2004, IEEE Transactions on Signal Processing.
[7] Vivek K Goyal,et al. Multiple description transform coding: robustness to erasures using tight frame expansions , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[8] Carl D. Meyer,et al. Matrix Analysis and Applied Linear Algebra , 2000 .
[9] Richard E. Blahut. Algebraic Methods for Signal Processing and Communications Coding , 1991 .
[10] Paulo Jorge S. G. Ferreira,et al. Locating and correcting errors in images , 1997, Proceedings of International Conference on Image Processing.
[11] O. Christensen. Frames, Riesz bases, and discrete Gabor/wavelet expansions , 2001 .
[12] Jelena Kovacevic,et al. Quantized frame expansions in a wireless environment , 2002, Proceedings DCC 2002. Data Compression Conference.
[13] Christine Guillemot,et al. Application of DFT codes for robustness to erasures , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).
[14] Ole Christensen,et al. An introduction to the theory of bases,frames, and wavelets , 1999 .
[15] Elwyn R. Berlekamp,et al. Algebraic coding theory , 1984, McGraw-Hill series in systems science.
[16] T. Marshall,et al. Coding of Real-Number Sequences for Error Correction: A Digital Signal Processing Problem , 1984, IEEE J. Sel. Areas Commun..
[17] Vivek K. Goyal,et al. Quantized frame expansions as source-channel codes for erasure channels , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).
[18] Jelena Kovacevic,et al. Uniform tight frames for signal processing and communication , 2001, SPIE Optics + Photonics.
[19] Georg Zimmermann,et al. Normalized Tight Frames in Finite Dimensions , 2001 .
[20] E. Wagner. International Series of Numerical Mathematics , 1963 .
[21] John J. Benedetto,et al. Finite Normalized Tight Frames , 2003, Adv. Comput. Math..
[22] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[23] Jack K. Wolf,et al. Redundancy, the Discrete Fourier Transform, and Impulse Noise Cancellation , 1983, IEEE Trans. Commun..
[24] Vivek K. Goyal,et al. Quantized Overcomplete Expansions in IRN: Analysis, Synthesis, and Algorithms , 1998, IEEE Trans. Inf. Theory.
[25] R. Blahut. Theory and practice of error control codes , 1983 .