On the expressiveness of subset-sum representations

Abstract. We develop a general theory for representing information as sums of elements in a subset of the basic set A of numbers of cardinality n, often refered to as a “knapsack vector”. How many numbers can be represented in this way depends heavily on n. The lower, resp. upper, bound for the cardinality of the set of representable numbers is quadratic, resp. exponential, in terms of n. We give an algorithm for the construction of a knapsack vector of any prescribed expressiveness (that is, the cardinality of the set of representable numbers), provided it falls within the range possible for expressiveness.