The first release of data from the Herschel ATLAS: the SPIRE images

We have reduced the data taken with the Spectral and Photometric Imaging Receiver (SPIRE) photometer on board the Herschel Space Observatory in the Science Demonstration Phase (SDP) of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). We describe the data reduction, which poses specific challenges, both because of the large number of detectors which can have noise correlated in each array, and because only two scans are made for each region. We implement effective solutions to process the bolometric timelines into maps, and show that correlations among detectors are negligible, and that the photometer is stable on time scales up to 250 s. This is longer than the time the telescope takes to cross the observed sky region, and it allows us to use naive binning methods for an optimal reconstruction of the sky emission. The maps have equal contribution of confusion and white instrumental noise, and the former is estimated to 5.3, 6.4 and 6.7 mJy beam−1 (1σ), at 250, 350 and 500 μm, respectively. This pipeline is used to reduce other H-ATLAS observations, as they became available, and we discuss how it can be used with the optimal map maker implemented in the Herschel Interactive Processing Environment (HIPE), to improve computational efficiency and stability. The SDP data set is available from http://www.h-atlas.org/.

[1]  S. Maddox,et al.  H-ATLAS : PACS imaging for the Science Demonstration Phase , 2010, 1009.0262.

[2]  S. Bamford,et al.  Herschel–ATLAS: counterparts from the ultraviolet–near-infrared in the science demonstration phase catalogue , 2010, 1007.5260.

[3]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[4]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[5]  H. Roussel,et al.  In-flight calibration of the Herschel-SPIRE instrument , 2010, 1005.5073.

[6]  D. Elbaz,et al.  HerMES: The SPIRE confusion limit , 2010, 1005.2207.

[7]  J. Dunlop,et al.  A joint analysis of BLAST 250–500 μm and LABOCA 870 μm observations in the Extended Chandra Deep Field-South , 2010, 1003.2647.

[8]  S. Maddox,et al.  The Herschel ATLAS , 2009, 0910.4279.

[9]  R. Stompor,et al.  MADmap: A MASSIVELY PARALLEL MAXIMUM LIKELIHOOD COSMIC MICROWAVE BACKGROUND MAP-MAKER , 2009, 0906.1775.

[10]  James J. Bock,et al.  SUBMILLIMETER NUMBER COUNTS FROM STATISTICAL ANALYSIS OF BLAST MAPS , 2009, 0906.0981.

[11]  Itziar Aretxaga,et al.  Over half of the far-infrared background light comes from galaxies at z ≥ 1.2 , 2009, Nature.

[12]  James J. Bock,et al.  BLAST: A FAR-INFRARED MEASUREMENT OF THE HISTORY OF STAR FORMATION , 2009, 0904.1206.

[13]  James J. Bock,et al.  BLAST: RESOLVING THE COSMIC SUBMILLIMETER BACKGROUND , 2009, 0904.1205.

[14]  M. Halpern,et al.  SANEPIC: A Mapmaking Method for Time Stream Data from Large Arrays , 2007, 0711.3462.

[15]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[16]  G. Lagache,et al.  Statistical properties of dust far-infrared emission , 2007, 0704.2175.

[17]  J. Mather,et al.  Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter , 2006 .

[18]  Itziar Aretxaga,et al.  The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) 2005: Calibration and Targeted Sources , 2004, SPIE Astronomical Telescopes + Instrumentation.

[19]  James J. Bock,et al.  Design and performance of feedhorn-coupled bolometer arrays for SPIRE , 2003, SPIE Astronomical Telescopes + Instrumentation.

[20]  James J. Bock,et al.  Silicon nitride micromesh bolometer arrays for SPIRE , 1998, Astronomical Telescopes and Instrumentation.

[21]  Robert Lupton,et al.  Statistics in Theory and Practice , 2020 .