Entropic Approximation for Mathematical Programs with Robust Equilibrium Constraints

In this paper, we consider a class of mathematical programs with robust equilibrium constraints represented by a system of semi-infinite complementarity constraints (SICC). We propose a numerical scheme for tackling SICC. Specifically, by relaxing the complementarity constraints and then randomizing the index set of SICC, we employ the well-known entropic risk measure to approximate the semi-infinite constraints with a finite number of stochastic inequality constraints. Under some moderate conditions, we quantify the approximation in terms of the feasible set and the optimal value. The approximation scheme is then applied to a class of two stage stochastic mathematical programs with complementarity constraints in combination with the polynomial decision rules. Finally, we extend the discussion to a mathematical program with distributionally robust equilibrium constraints, which is essentially a one stage stochastic program with semi-infinite stochastic constraints indexed by some probability measures from...

[1]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[2]  Zhaolin Hu,et al.  Kullback-Leibler divergence constrained distributionally robust optimization , 2012 .

[3]  Peter Kall,et al.  Stochastic Programming , 1995 .

[4]  Miguel Carrasco,et al.  Minimization of the expected compliance as an alternative approach to multiload truss optimization , 2005 .

[5]  Gui-Hua Lin,et al.  Stochastic Equilibrium Problems and Stochastic Mathematical Programs with Equilibrium Constraints: A Survey 1 , 2009 .

[6]  Shie Mannor,et al.  A distributional interpretation of robust optimization , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[7]  M. Fukushima,et al.  Solving stochastic mathematical programs with equilibrium constraints via approximation and smoothing implicit programming with penalization , 2008, Math. Program..

[8]  Alexander Shapiro,et al.  On Complexity of Stochastic Programming Problems , 2005 .

[9]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[10]  Benjamin Pfaff,et al.  Perturbation Analysis Of Optimization Problems , 2016 .

[11]  Yongchao Liu,et al.  Stability Analysis of Two-Stage Stochastic Mathematical Programs with Complementarity Constraints via NLP Regularization , 2011, SIAM J. Optim..

[12]  Michael Patriksson,et al.  Stochastic mathematical programs with equilibrium constraints , 1999, Oper. Res. Lett..

[13]  H. Föllmer,et al.  ENTROPIC RISK MEASURES: COHERENCE VS. CONVEXITY, MODEL AMBIGUITY AND ROBUST LARGE DEVIATIONS , 2011 .

[14]  D. Azé,et al.  A survey on error bounds for lower semicontinuous functions , 2003 .

[15]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[16]  Daniel Kuhn,et al.  Polynomial Approximations for Continuous Linear Programs , 2012, SIAM J. Optim..

[17]  Stanislav Uryasev,et al.  Conditional Value-at-Risk for General Loss Distributions , 2002 .

[18]  Anja De Waegenaere,et al.  Robust Solutions of Optimization Problems Affected by Uncertain Probabilities , 2011, Manag. Sci..

[19]  Melvyn Sim,et al.  Distributionally Robust Optimization and Its Tractable Approximations , 2010, Oper. Res..

[20]  Huifu Xu,et al.  An Implicit Programming Approach for a Class of Stochastic Mathematical Programs with Complementarity Constraints , 2006, SIAM J. Optim..

[21]  H. Föllmer,et al.  Stochastic Finance: An Introduction in Discrete Time , 2002 .

[22]  Yongchao Liu,et al.  Penalized Sample Average Approximation Methods for Stochastic Mathematical Programs with Complementarity Constraints , 2011, Math. Oper. Res..

[23]  Daniel Kuhn,et al.  Primal and dual linear decision rules in stochastic and robust optimization , 2011, Math. Program..

[24]  Stefan Scholtes,et al.  Convergence Properties of a Regularization Scheme for Mathematical Programs with Complementarity Constraints , 2000, SIAM J. Optim..

[25]  R. Wets,et al.  Stochastic programming , 1989 .

[26]  Huifu Xu Uniform exponential convergence of sample average random functions under general sampling with applications in stochastic programming , 2010 .

[27]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[28]  Jong-Shi Pang,et al.  Error bounds in mathematical programming , 1997, Math. Program..

[29]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[30]  Peng Sun,et al.  A Linear Decision-Based Approximation Approach to Stochastic Programming , 2008, Oper. Res..

[31]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[32]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[33]  Alexander Shapiro,et al.  Asymptotic analysis of stochastic programs , 1991, Ann. Oper. Res..

[34]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[35]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[36]  Jean-Philippe Vial,et al.  Robust Optimization , 2021, ICORES.

[37]  Fanwen Meng,et al.  A Regularized Sample Average Approximation Method for Stochastic Mathematical Programs with Nonsmooth Equality Constraints , 2006, SIAM J. Optim..

[38]  Arkadi Nemirovski,et al.  Robust Truss Topology Design via Semidefinite Programming , 1997, SIAM J. Optim..

[39]  Jane J. Ye,et al.  Necessary Optimality Conditions for Two-Stage Stochastic Programs with Equilibrium Constraints , 2010, SIAM J. Optim..

[40]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..